CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the October/November 2014 series

4037 ADDITIONAL MATHEMATICS

4037/22 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2014	4037	22

1 (a)		B1	
(b)		B1	Both written or on diagram
(6)	No.in H only = $50 - x$; No in F only = $60 - x$ Sum: $50 - x + 60 - x + x + 30 - 2x = 98$ x = 14	M1 A1	Add at least 3 terms each with x involved and equate to 98 soi
2	$9x^{2} + 2x - 1 < (x + 1)^{2}$ $8x^{2} < 2 \text{ oe isw}$ $-\frac{1}{2} < x < \frac{1}{2}$	M1 A1 A1	Expand and collect terms
3	$\log_{2}(x+3) = \log_{2} y + 2 \rightarrow x + 3 = 4y$ $\log_{2}(x+y) = 3 \rightarrow x + y = 8$ $x+3 = 4(8-x)$ $5x = 29 \rightarrow x = 5.8, \text{ oe}$ $y = 2.2 \text{ oe}$	B1 B1 M1 A1 A1	Eliminate y or x from two linear three term equations

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2014	4037	22

4 (i)	$f(37) = 3 \text{ or } gf(x) = \frac{\sqrt{x-1} - 3 - 2}{2(\sqrt{x-1} - 3) - 3}$ $gf(37) = \frac{3-2}{6-3} = \frac{1}{3}$	B1 B1	
(ii)	$y = \sqrt{x-1} - 3 \rightarrow (y+3)^2 = x-1$ $(x+3)^2 + 1 = f^{-1}(x)$ oe isw	M1 A1	Rearrange and square in any order Interchange x and y and complete
(iii)	$y = \frac{x-2}{2x-3}$ $2xy-3y = x-2 \rightarrow 2xy-x = 3y-2$ $\frac{3x-2}{2x-1} = g^{-1}(x) \text{ oe}$	M1 A1	Multiply and collect like terms Interchange and complete Mark final answer
5 (i) (ii)	B = 900 $B = 500 + 400e^2 = 3455 \text{ or } 3456 \text{ or } 3460$	B1 B1	3455.6 scores B0
(iii)	$\left(\frac{dB}{dt} = \right) 80e^{0.2t}$ $t = 10 \to \frac{dB}{dt} = 80e^2 = 591(/day)$	B1 B1	awrt
(iv)	$10000 = 500 + 400e^{0.2t} \rightarrow e^{0.2t} = (23.75)$ $0.2t = \ln 23.75$ $t = 15.8 \text{ (days)}$	M1 DM1 A1	$e^{0.2t} = k$ take logs: $0.2t = \ln k$ awrt

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2014	4037	22

Points $(1, 3), (-3, -1)$ isw A1	3 term quadratic with attempt to solve both <i>x</i> or a pair both <i>y</i> or second pair
or elimination of x leads to $y^2 - 2y - 3 = 0$,	•
or elimination of x leads to $y^2 - 2y - 3 = 0$,	,
then as above	
(ii) $m^2x^2 + 10mx + 25 + x^2 = 10$ B1	
$(m^2+1)x^2+10mx+15=0$	
$\mathbf{A1}$	attempt to use discriminant on three term quadratic. Allow unsimplified
$m = \pm \sqrt{\frac{3}{2}}$ oe isw	cao ± is required
Alternative solution:	
$\frac{dy}{dx} = \frac{-x}{\sqrt{10 - x^2}} \text{ or } \frac{dy}{dx} = -\frac{x}{y}$ B1	allow unsimplified
Result:	
$y^2 = x^2 + 5y$ after inserted in $y = mx + 5$	Plining
	Eliminate <i>x</i> or <i>y</i> both
$m = \pm \frac{3}{\sqrt{6}} \text{ oe}$	0041
$m=\pm \sqrt{6}$ de	
7 (i) $v = 2\cos t + 1$ B1	mark final answer
	equate their v to zero (must be a
	differential) and attempt to solve to find an angle
$t = \frac{2\pi}{3} \text{ or } 2.09$	awrt
(iii) $t = \frac{2\pi}{3} \rightarrow x = 2\sin\left(\frac{2\pi}{3}\right) + \frac{2\pi}{3} = 3.83 \mathrm{m}$ B1	awrt
$a = -2\sin t$ R1ft	ft <i>their</i> v (2 nd differential)
2π $\sqrt{2}$ 1.73 -2	ft using <i>their</i> angle <i>t</i> in correct <i>a</i> awrt
3 4	
1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 1	apply quotient or product rule unsimplified
	k=4 does not need to be specifically
	identified $\frac{1}{their \ k} \times \text{ original function}$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2014	4037	22

	-		
9	$(a+3\sqrt{5})^2 = a^2 + 3\sqrt{5}a + 3\sqrt{5}a + 45$ oe	B1	anywhere
	Equate: $a^2 + a + 45 = 51$	B1	
	and $6a - b = 0$	B1	
	(a+3)(a-2)=0	M1	Attempt to solve three term quadratic with integer coefficients obtained by
	a = -3, 2 b = -18, 12	A1 A1	equating coeffs Both as correct or one correct pair Both bs correct
10 (i)	$\sec x \csc x = \frac{1}{\cos x \sin x}$	B1	anywhere
	$\cot x = \frac{\cos x}{\sin x}$	B1	anywhere
	$LHS = \frac{1 - \cos^2 x}{\cos x \sin x} \text{ oe}$	B1ft	correct addition of their terms
	$= \frac{\sin^2 x}{\cos x \sin x} = \tan x \qquad AG$	B1	use of identity and cancel
(ii)	$3\cot x - \cot x = \tan x \to 2\cot x = \tan x$	M1	equate and collect like terms, allow sign errors
	$\tan^2 x = 2$ oe x = 54.7, 125.3, 234.7, 305.3	A1 A1	2 values
	x = 54.7, 125.3, 254.7, 305.5	A1	only 2 more values. awrt
11 (i)	Area of sector = $\frac{1}{2} \times x^2 \times 0.8 = 0.4x^2 \text{ cm}^2$	B1	anywhere
	$SR = 5\sin 0.8 (= 3.59)$ or	B1	SR may be seen in stated $\frac{1}{2}ab\sin C$
	$OR = 5\cos 0.8 (= 3.48)$		
	Area of triangle =		
	$\frac{1}{2}5\cos 0.8 \times 5\sin 0.8 = 6.247 \text{cm}^2$	M1	insert correct terms into correct area
	$\begin{bmatrix} 2 \\ 0.08x^2 = 6.247 \end{bmatrix}$	A1	formulae
	x = 8.837 cm AG	A1	
(ii)	SQ = 8.84 - 5 (= 3.84 cm)		
	$PR = 8.84 - 5\cos 0.8 (= 5.35 \text{ or } 5.36 \text{cm})$	B1	two lengths from SQ, PR, PQ awrt
	$PQ = 8.84 \times 0.8 (= 7.07 \text{ cm})$	B1	third length awrt
	Perimeter = 19.84 to 19.86 cm or rounded to 19.8 or 19.9	B1	sum
(iii)	Area $PQSR = 4 \times 6.247$	M1	
	$=25\mathrm{cm}^2$	A1	24.95 to 25

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2014	4037	22

12 (i)	$f(2) = 3(2^3) - 14(2^2) + 32 = 0$ Or complete long division	B1	
(ii)	$f(x) = (x-2)(3x^2 - 8x - 16)$	M1 A1 M1	$3x^2$ and 16 8x and correct signs Factorise three term quadratic
	f(x) = (x-2)(x-4)(3x+4)	A1	Table to the quantum q
(iii)	x = 2, 4	B 1	
(iv)	$\int 3x - 14 + \frac{32}{x^2} dx = 1.5x^2 - 14x - \frac{32}{x} (+c)$	B1 B1	first 2 terms third term correct unsimplified
	Area = $\left[1.5x^2 - 14x - \frac{32}{x} \right]_2^4$	M1	Limits of 2 and 4 and subtract
	= (-) 2	A1	