MARK SCHEME for the May/June 2014 series

4037 ADDITIONAL MATHEMATICS

4037/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme		Syllabus	Paper	
	GCE O LEVEL – May/June 201	4	4037	11	
1	LHS = $\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta}$	B1	B1 for use of $\tan \theta$	$=\frac{\sin\theta}{\cos\theta}$	
	$=\frac{\sin\theta(1+\sin\theta)+\cos^2\theta}{\cos\theta(1+\sin\theta)}$	M1	M1 for attempt fraction	to obtain a sin	gle
	$=\frac{1+\sin\theta}{\cos\theta(1+\sin\theta)}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$		
	$=\frac{1}{\cos\theta}$ leading to $\sec\theta$	A1	A1 for 'finishing off'		
	Alternative solution: LHS = $\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta (1 - \sin \theta)}{(1 + \sin \theta)(1 - \sin \theta)}$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$		
	$=\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta(1-\sin\theta)}{\cos^2\theta}$	M1	M1 for multiplication	on by $(1 - \sin \theta)$	
	$=\frac{\sin\theta}{\cos\theta}+\frac{(1-\sin\theta)}{\cos\theta}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta =$		
	$=\frac{1}{\cos\theta}$ leading to $\sec\theta$	A1	A1 for 'finishing of	f	
	Alternative solution: LHS = $\frac{\tan \theta (1 + \sin \theta) + \cos \theta}{1 + \sin \theta}$	M1	M1 for attempt fraction	to obtain a sin	gle
	$=\frac{\frac{\sin\theta}{\cos\theta} + \frac{\sin^2}{\cos\theta} + \cos\theta}{1 + \sin\theta}$	B1	B1 for use of $\tan \theta$	$=\frac{\sin\theta}{\cos\theta}$	
	$=\frac{\sin\theta+\sin^2\theta+\cos^2\theta}{\cos\theta(1+\sin\theta)}$				
	$=\frac{1+\sin\theta}{\cos\theta(1+\sin\theta)}$	DM1	DM1 for use of sin	$^{2}\theta + \cos^{2}\theta = 1$	
	$=\frac{1}{\cos\theta}$ leading to $\sec\theta$	A1	A1 for 'finishing of	f	

	Page 3	Mark Scheme		Syllabus	Paper	
		GCE O LEVEL – May/June 2014		4037	11	
2	(i)	$ \mathbf{a} = \sqrt{4^2 + 3^2} = 5$ M1 N		M1 for finding the r	nodulus of either	•
		$ \mathbf{b} + \mathbf{c} = \sqrt{(-3)^2 + 4^2} = 5$		$\mathbf{a} \text{ or } \mathbf{b} + \mathbf{c}$		
		$ \mathbf{v} + \mathbf{c} = \sqrt{(-3)^2 + 4^2} = 3$	A1	A1 for completion		
	(ii)	$\lambda \begin{pmatrix} 4\\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2\\ 2 \end{pmatrix} = 7 \begin{pmatrix} -5\\ 2 \end{pmatrix}$				
		$4\lambda + 2\mu = -35$ and $3\lambda + 2\mu = 14$	M1	M1 for equating like vectors a obtaining 2 linear equations		and
			DM1	DM1 for solution	n of simultane	eous
		leading to $\lambda = -49$, $\mu = 80.5$	A1	equations A1 for both		
3	(a)		B1 B1 B1	B1 for each		
	(b) (i)	2	B1			
	(ii)	0	B1			
4		$k(4x - 3) = 4x^2 + 8x - 8$	M1	M1 for equating the line and the o		urve
		$4x^2 + x(8 - 4k) + 3k - 8 = 0$		and attempt to equation in k	obtain a quadı	ratic
		$b^2 - 4ac = (8 - 4k)^2 - 16(3k - 8)$	DM1	DM1 for use of b^2	-4ac with k	
		$=16k^{2} - 112k + 192$ $h^{2} - 4ac < 0 k^{2} - 7k + 12 < 0$	DM1	DM1 for solution c	f a 3 term quadi	ratic
				equation, dependent	on both previou	is M
		critical values $k = 3, 4$	A1	A1 for both critical values		
		$\therefore 3 < k < 4$	A1	A1 for the range		
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\mathrm{e}^{x^2}$	B1B1	B1 for e^{x^2} , B1 for	$r 2xe^{x^2}$	
	(ii)	$\frac{1}{2}e^{x^2}$	M1A1	M1 for ke^{x^2} A1 for	$r \frac{1}{2}e^{x^2}$	
	(iii)	$\left(\frac{1}{2}e^4\right) - \left(\frac{1}{2}\right) = 26.8$	DM1 A1	DM1 for correct use A1 for 26.8, allow e	e of limits xact value	

	Page 4 Mark Scheme		Syllabus	Paper		
	GCE O LEVEL – May/June 2014		4037	11		
6	(i)	$\mathbf{AB} = \begin{pmatrix} 10 & 19 \\ 32 & 37 \\ 14 & 14 \end{pmatrix}$	M1 A1	M1 for at least 3 correct elements of 3×2 matrix A1 for all correct		fa
	(ii)	$\mathbf{B}^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$	B1 B1	B1 for $\frac{1}{7}$, B1 for $\begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$		
	(iii)	$2\begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ -22 \end{pmatrix}$	M1	M1 for obtaining in matrix form		
		$\binom{x}{y} = \frac{1}{7} \binom{5}{-3} \frac{-1}{2} \binom{-1.5}{-11} = \frac{1}{7} \binom{3.5}{-17.5}$	M1	M1 for pre-multiplying by B ⁻¹		
		x = 0.5, y = -2.5	A1	A1 for both		
7	(i)	$y = 2x^2 - \frac{1}{x+1}(+c)$	B1 B1	B1 for each correct	term	
		when $x = \frac{1}{2}$, $y = \frac{5}{6}$ so $\frac{5}{6} = \frac{1}{2} - \frac{2}{3} + c$	M1	M1 for attempt to find $+c$, must have least 1 of the previous B marks		; at
		leading to $c = 1$	A1	Allow A1 for $c = 1$		
		$\left(y = 2x^2 - \frac{1}{x+1} + 1\right)$		M1 for using $x = 1$ in their (i) to find y		
	(ii)	When $x = 1, y = \frac{5}{2}$	M1			V
		$\frac{dy}{dx} = \frac{17}{4}$ so gradient of normal $= -\frac{4}{17}$	B1	B1 for gradient of n	ormal	
		Equation of normal $y - \frac{5}{2} = -\frac{4}{17}(x-1)$	DM1	 DM1 for attempt at normal equation A1 – allow unsimplified (fractions must not contain decimals) 		
		(8x+34y-93=0)	A1			

	Page 5	Mark Scheme		Syllabus	Paper	
		GCE O LEVEL – May/June 2014		4037	11	
8	(i)	$\log p = n \log V + \log k $ B1		B1 for statement, by later work	ut may be implied	by
		$\ln V$ 2.30 3.91 4.61 5.30				
		lnp 4.55 2.14 1.10 0.10				
		lgV 1 1.70 2 2.30				
		lgp 1.98 0.93 0.48 0.04				
		log P	M1 A2,1,0	M1 for plotting a su -1 for each error in	iitable graph points plotted	
	(ii)	Use of gradient = n n = -1.5 (allow -1.4 to -1.6)	DM1 A1	DM1 for equating <i>n</i>	numerical gradient	to
	(iii)	Allow 13 to 16	DM1 A1	DM1 for use of <i>their</i> graph or substitution into <i>their</i> equation.		or
9	(a)	Distance travelled = area under graph = $\frac{1}{2}(60 + 20) \times 12 = 480$	M1 A1	M1 for realising that area represents distance travelled and attempt to find area		nts nd
	(b)		B1 B1 B1	B1 for velocity of 2 ms ⁻¹ for $0 \le t \le 6$ B1 for velocity of zero for <i>their</i> '6' to <i>their</i> '25' B1 for velocity of 1 ms ⁻¹ for $25 \le t \le 30$		to 30
	(c) (i)	$v = 4 - \frac{16}{t+1}$	M1	M1 for attempt at d	ifferentiation	
		When $v = 0$, $t = 3$	DM1 A1	DM1 for equating attempt to solve	velocity to zero a	nd
	(ii)	$a = \frac{16}{\left(t+1\right)^2}$	M1	M1 for attempt a equating to 0.25 with	t differentiation a the attempt to solve	nd
		$0.25(t+1)^2 = 16$				
		<i>t</i> = 7	A1			

Page 6		Mark Scheme		Syllabus	Paper	
	GCE O LEVEL – May/June 2014		4037	11		
10	(a)	1 digit even numbers 2	B1			
		2 digit even numbers $4 \times 2 = 8$	B 1			
		3 digit even numbers $3 \times 3 \times 2 = 18$	B 1			
		Total = 28	B1			
	(b) (i)	3M 5W = 35	B1			
		$4M \ 4W = 175$	B1			
		5M 3W = 210	B1			
		Total = 420	B1	B1 for addition to must be evaluated.	obtain final ansv	ver,
		or ${}^{12}C = 6M 2W = 7M 1W$		or as above final	B1 for subtraction	n to
		$C_8 = 0.012 \text{ W} = 7.011 \text{ W}$		get final answer	DI 101 Subtraction	1 10
	(ii)	Oldest man in, oldest woman out and vice-versa				
		${}^{10}C_7 \times 2 = 240$	B1, B1	B1 for ${}^{10}C_7$, B1 fo identical cases	r realising there a	re 2
		Alternative:				
		1 man out 1 woman in				
		6 men 4 women				
		6M 1W: ${}^{6}C_{6} \times {}^{4}C_{1} = 4$				
		$5M 2W$: ${}^{6}C_{5} \times {}^{4}C_{2} = 36$				
		$4M \ 3W: \ {}^{6}C_{4} \times {}^{4}C_{3} = 60$				
		$3M 4W$: ${}^{6}C_{2} \times {}^{4}C_{4} = 20$				
		Total = 120	B 1	All separate cases c	orrect for B1	
		There are 2 identical cases to consider, so 240 ways in all.	B1	B1 for realising the cases, which have in	here are 2 ident	ical

Page 7		Mark Scheme		Syllabus	Paper
GCE O LEVEL – May/June 2014		14	4037	11	
		· · · · · · · · · · · · · · · · · · ·			
11	(9)	In each case t			ast A mark is for a lution and no extra
11	(<i>a</i>)			solutions within th	e range
		$5\sin 2x + 3\cos 2x = 0$	M1	M1 for use of tan	8-
		$\tan 2x = -0.6$	DM1	DM1 for dealing wi	ith $2x$ correctly
		$2x = 149^{\circ}, 329^{\circ}$			
		$x = 74.5^{\circ}, 164.5^{\circ}$	AI,AI	AI for each	
		Alternatives:			
		$\sin(2x+31^\circ) = 0$ or $\cos(2x-59^\circ) = 0$	M1	M1 for either, then	mark as above
	(b)	$2\cot^2 y + 3\csc e = 0$			
		$2(\csc^2 y - 1) + 3\csc e y = 0$	M1	M1 for use of correct	ct identity
		$2\csc^2 y + 3\csc e y - 2 = 0$			
		$(2\csc ecy - 1)(\csc ecy + 2) = 0$	M1	M1 for attempt to factorise a 3 te quadratic equation	
		One valid solution			
		$\cos \exp = -2, \ \sin y = -\frac{1}{2}$			
		$y = 210^{\circ}, 330^{\circ}$	A1,A1	A1 for each	
		Alternative:			
		$2\frac{\cos^2 y}{\sin^2 y} + \frac{3}{\sin y} = 0$	M1	M1 for use of $\cot y$	$=\frac{\cos y}{\sin y}$ and
				1	
		leads to $2\sin^2 y - 3\sin y - 2 = 0$		$\cos \sec y = \frac{1}{\sin y}$	
		and $\sin y = -\frac{1}{2}$ only	M1	M1 for attempt to quadratic equation	factorise a 3 term
		<i>y</i> = 210°, 330°	A1A1		
	(c)	$3\cos(z+1.2) = 2$			
		$\cos(z+1.2) = \frac{2}{3}$			
		(z+1.2) = 0.8411, 5.442, 7.124	M1	M1 for correct order of operations end up with 0.8411 radians or better A1 for one of 5.441 or 7.124 (or bette A1 for each valid solution	
		<i>z</i> = 4.24, 5.92	A1 A1A1		