MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

4037 ADDITIONAL MATHEMATICS

4037/11 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2011	4037	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2011	4037	11

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

GCE O LEVEL - October/November 2011 4037 1 (a) (i) 7 and 0 B2 B1 for each. (ii) 22 and 15 B2 B1 for each. [4] (b) 3 'sets' enclosed in a rectangle B1 B1 for set P and set B1 for set R contains [2] $f(-2):-2a+b=84$ M1 M1 for substitution of A1 $f\left(\frac{1}{2}\right):\frac{1}{2}a+b=\frac{3}{2}$ A1 A1 for each correct of unsimplified) $a = -33, b = 18$ M1, A1 M1 for solution to of f(1) = -19 $\sqrt{B1}$ $\sqrt{B1}$ M1 for a valid attem M1 for a valid attem M1 for attempt to de c = 0.251 (i) $N = 0.251t^4$ A1	Paper
(ii) 22 and 15B2B1 for each.(ii) 3 'sets' enclosed in a rectangleB1 B1 B1 B1 B1 [2]B1 for set P and set B1 B1 for set R containe [2]2 $f(-2):-2a+b=84$ M1 A1M1 for substitution of A1 $f\left(\frac{1}{2}\right):\frac{1}{2}a+b=\frac{3}{2}$ A1 A1A1 for each correct of unsimplified) $a=-33, b=18$ M1, A1 [6]M1 for solution to of $\sqrt{B1}$ $f(1)=-19$ $\sqrt{B1}$ $\sqrt{B1}$ on their a and b M1 for a valid attem M1 for attempt to de A1 [4](ii) $N=0.251t^4$ $\sqrt{B1}$ $\sqrt{B1}$ on their m and a	11
(ii) 22 and 15B2B1 for each.(ii) 3 'sets' enclosed in a rectangleB1 B1 B1 B1 B1 [2]B1 for set P and set B1 B1 for set R containe [2]2 $f(-2):-2a+b=84$ M1 A1M1 for substitution of A1 $f\left(\frac{1}{2}\right):\frac{1}{2}a+b=\frac{3}{2}$ A1 A1A1 for each correct of unsimplified) $a=-33, b=18$ M1, A1 [6]M1 for solution to of $\sqrt{B1}$ $f(1)=-19$ $\sqrt{B1}$ $\sqrt{B1}$ on their a and b M1 for a valid attem M1 for attempt to de A1 [4](ii) $N=0.251t^4$ $\sqrt{B1}$ $\sqrt{B1}$ on their m and a	
(b) 3 'sets' enclosed in a rectangle[4]B1 B1 [2]B1 for set P and set B1 for set R contained2 $f(-2): -2a + b = 84$ M1 A1 $f\left(\frac{1}{2}\right): \frac{1}{2}a + b = \frac{3}{2}$ A1A1A1 for each correct of unsimplified) $a = -33, b = 18$ M1, A1 $f(1) = -19$ $\sqrt{B1}$ $\sqrt{B1}$ $\sqrt{B1}$ on their a and b3(i) Gradient $m = 4$ $\lg c = -0.6$ $a = 0.251$ A1 $M1$ $(ii) N = 0.251t^4$ $\sqrt{B1}$	
B1B1 for set R contained2 $f(-2): -2a + b = 84$ M1 A1M1 for substitution of A1 $f\left(\frac{1}{2}\right): \frac{1}{2}a + b = \frac{3}{2}$ A1A1 for each correct of unsimplified) $a = -33, b = 18$ M1, A1M1 for solution to of $\sqrt{B1}$ $f(1) = -19$ $\sqrt{B1}$ $\sqrt{B1}$ on their a and b3(i) Gradient $m = 4$ $\lg c = -0.6$ B1 M1 M1 M1 for a valid attem M1 for attempt to de A1 $[4]$ (ii) $N = 0.251t^4$ $\sqrt{B1}$ $\sqrt{B1}$ on their m and compared	
Image: A for a value of the formA1A1 $f\left(\frac{1}{2}\right): \frac{1}{2}a + b = \frac{3}{2}$ A1A1 for each correct of unsimplified) $a = -33, b = 18$ M1, A1M1 for solution to of $\sqrt{B1}$ $f(1) = -19$ $\sqrt{B1}$ $\sqrt{B1}$ on their a and b $f(1) = -19$ $\sqrt{B1}$ $\sqrt{B1}$ on their a and b $f(1) = -19$ $\sqrt{B1}$ M1 for a valid attem $f(1) = -19$ $\sqrt{B1}$ M1 for a valid attem $f(1) = -19$ $\sqrt{B1}$ M1 for a valid attem $f(1) = -19$ $\sqrt{B1}$ M1 for a valid attem $f(1) = -19$ $\sqrt{B1}$ M1 for a valid attem $f(1) = -19$ $\sqrt{B1}$ M1 for a valid attem $f(1) = -19$ $\sqrt{B1}$ $\sqrt{B1}$ on their m and content of the valid attem $f(1) = -19$ $\sqrt{B1}$ $\sqrt{B1}$ on their m and content of the valid attem $f(1) = -19$ $\sqrt{B1}$ $\sqrt{B1}$ on the valid attem	
$a = -33, b = 18$ M1, A1M1 for solution to of $f(1) = -19$ $\sqrt{B1}$ $\sqrt{B1}$ on their a and b3 (i) Gradient $m = 4$ $[6]$ M1 $\lg c = -0.6$ M1M1 for a valid attem $c = 0.251$ A1[4](ii) $N = 0.251t^4$ $\sqrt{B1}$ on their m and c	f a correct value of x
f(1) = -19 $\sqrt{B1}$ $\sqrt{B1}$ on their a and b3(i) Gradient $m = 4$ B1 $\lg c = -0.6$ M1 for a valid attem M1c = 0.251A1 $[4]$ [4] $\sqrt{B1}$ $\sqrt{B1}$ on their m and c	quation (allow
3(i) Gradient $m = 4$ [6] $\lg c = -0.6$ B1 M1 M1M1 for a valid attem M1 for attempt to de A1 [4] $c = 0.251$ A1 [4] $\sqrt{B1}$ (ii) $N = 0.251t^4$ $\sqrt{B1}$	otain <i>a</i> and <i>b</i>
lg c = -0.6 $c = 0.251$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ M	
(ii) $N = 0.251t^4$ [4] $\sqrt{B1}$ $\sqrt{B1}$ on their <i>m</i> and <i>a</i>	
4 (i) $6! = 720$ B1	
(ii) $2 \times 5! = 240$ [1] B1 [1]	
(iii) $4 \times 5! = 480$ [1] B1 [1]	
(iv) Even first and last: 4! (24) Odd first and even last: 4 x 4! (144) Total: $7 \times 4! = 168$ [1] B1 B1 B1 [3]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2011		11

5	(i) $v = 2\cos 2t$ when $t = 0, v = 2$	M1 A1 [2]	M1 for attempt to differentiate
	(ii) $\cos 2t = 0$, $2t = \frac{\pi}{2}$	M1	M1 for attempt to solve and deal with $2t$
	$t = \frac{\pi}{4}$ (0.785)	A1 [2]	
	(iii) when $t = \frac{\pi}{4}, x = 4$	B1	
	when $t = 0$, $x = 3$ distance moved = 1	√B1 [2]	$\sqrt{B1}$ for 'their 4' –3
	(iv) $a = -4\sin 2t$	M1	
	when $t = \frac{3\pi}{4}, a = 4$	A1 [2]	
6	$(a) -5 = p + 3\tan\left(-\frac{\pi}{4}\right)$	M1 A1	M1 for use of $\left(-\frac{\pi}{12}, -5\right)$
	$\therefore p = -2$ $1 = p'+3 \tan 3q$ $\tan 3q = 1$	M1	M1 for use of their p and $(q, 1)$
	$q = \frac{\pi}{12}$	A1 [4]	
	(b) amplitude $a = 4$ b = 5	B1 B1	
	When $f = 11, x = 0$, so $c = 7$ Or when $f = 3, x = \frac{\pi}{3}$, so $c = 7$	M1 A1 [4]	M1 for use of either max and $x = 0$, or min and $x = \frac{\pi}{3}$

Page 6	e 6 Mark Scheme: Teachers' version		Paper
	GCE O LEVEL – October/November 2011		11

7	(i)	$\frac{n(n-1)}{2\times 25} = \frac{3}{5}$	B1	B1 for correct term
		$n^2 - n - 30 = 0$ or $\binom{n}{2} = 15$	M1	M1 equating 3^{rd} term to $\frac{3}{5}$
		(2)	M1	5 M1 attempt to solve quadratic or realising
				that $\binom{n}{2} = 15$ when $n = 6$
		<i>n</i> = 6	A1 [4]	
	(ii)	$\left(1+nx+\frac{3}{5}x^2\right)\left(4-\frac{12}{x}+\frac{9}{x^2}\right)$		
		term : 4	B1	B1 for 4
		$-\frac{12n}{5}$ (14.4)	M1	M1 for 2 nd term
		$0.18(n^2 - n)$ (5.4)	M1	M1 for 3 rd term
		=-5	A1 [4]	
8	(a)	$\int_0^2 e^{2x} + 2e^x + 1 dx$	M1	M1 for expansion
		$\left[\frac{\mathrm{e}^{2x}}{2} + 2\mathrm{e}^{x} + x\right]_{0}^{2}$	B1 B1 B1	B1 for each correct term
		= 41.6	M1, A1 [6]	M1 for correct use of limits
	(b)	$y = \frac{1}{2} (4x+1)^{\frac{1}{2}} (+c)$	M1	M1 for attempt to integrate
			A1	A1 for $(4x+1)^{\frac{1}{2}}$
			A1	A1 for $\frac{1}{2}(4x+1)^{\frac{1}{2}}$
		when $y = 4.5$, $x = 2$, $c = 3$	M1	M1 for attempt to find <i>c</i> , must be from integration
		$y = \frac{1}{2}(4x+1)^{\frac{1}{2}} + 3$	A1	A1 for $c = 3$
		Z	[5]	

	Page 7	Mark Scheme: Teacher		Syllabus	Paper
		GCE O LEVEL – October/N	ovember 20	11 4037	11
9	(i) cosec^2	$c^2 x = 8 \sin x$ M1 M1 for use c equivalent			entity or
	$\sin^3 x$	$\sin^3 x = \frac{1}{8}$		M1 for dealing with cose	ec or equivalent
	$\sin x = \frac{1}{2}$ $x = 30^{\circ}, 150^{\circ}$		M1	M1 for attempt to solve	
			A1, A1 [5]	Withhold last A1 if extra	a solutions
	(ii) tan(2)	$v-0.3\bigr)=-\frac{5}{4}$	M1, A1	M1 for attempt to get in	terms of tan
	2y - 0.	3 = 2.2455, 5.387	M1	M1 for dealing with orde	er correctly
	<i>y</i> = 1.2	27, 2.84 (allow 1.28 and 2.85)	A1, A1 [5]		

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2011	4037	11

10	ЕП	HER			
	(i)	$\frac{1}{2}(2r)^2(3\theta) - 2\frac{1}{2}r^2\theta = 5$	M1 M1		M1 for use of sector area M1 for attempt to equate area to 5
		$\theta = \frac{1}{r^2}$	A1		
		$P = 2r(3\theta) + 2r + 2r + 2r\theta$	M1		M1 for use of arc length
		leading to $P = \frac{8}{r} + 4r$	M1		M1 for attempt to get <i>P</i> in terms of <i>r</i> and θ
		(answer given)	A1	[6]	
	(ii)	$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{8}{r^2} + 4$	M1		M1 for attempt to differentiate and equate to zero.
		when $\frac{\mathrm{d}P}{\mathrm{d}r} = 0$, $r = \sqrt{2}$	A1		
		$P = 8\sqrt{2}$	M1 A1	[4]	M1 for attempt to obtain <i>P</i>
	(iii)	$\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = \frac{16}{r^3} , + \mathrm{ve} \therefore \mathrm{minimum}$	B1		B1 for correct method and conclusion
		when $r = \sqrt{2}$, $\theta = \frac{1}{2}$	B1	[2]	

	Page 9 Mark Scheme: Teachers' version			Syllabus	Paper			
			GCE O LEVEL – October/No	vembe	er 20'	11	4037	11
10	OR (i)	<i>OC</i> = 10 -	- <i>ŗ</i>	B1	[1]			
	(ii)	$\sin\theta = \frac{r}{O}$	$\frac{1}{C}$, $\sin\theta = \frac{r}{10-r}$	M1		M1 fo	or attempt to use s	$\sin\! heta$
		leading to	$r = \frac{10\sin\theta}{1+\sin\theta}$	A1	[2]	A1 fo	-	to simplify to given
	(iii)	$\frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{10}{(1+1)^2}$	$\frac{1}{1+\sin\theta} + \frac{1}{\sin^2\theta}$	M1		M1 fo quoti	or correct attempt ent	to differentiate a
		when $r =$	$\frac{10}{3}$, $\sin\theta = \frac{1}{2}$, $\cos\theta = \frac{\sqrt{3}}{2}$	A2, 1, M1 M1	, 0	M1 fe	each error or attempt to find or substitution	sin or cos
		40	$\frac{0\sqrt{3}}{9}$ (3.85)	A1	[6]			
		$\frac{\mathrm{d}r}{\mathrm{d}t} = 2,$	$\frac{\pi}{6}$, $\frac{\mathrm{d}\theta}{\mathrm{d}r} = \frac{3\sqrt{3}}{20}$	B1				
		when $\theta = \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}t}$		M1		M1 fo	or correct use of r	ates of change
		leading to	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{3\sqrt{3}}{10} \ (0.520)$	A1	[3]			