MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2				Mark Sche	eme	Syllabus	Paper	,	
				GCE A	LEVEL – Ma	y/June 2014	9702	42	
					Se	ection A			
1	(a)	gravit GMm v = \	tational fo n/r² = mv² √(GM/r)	rce provides ²/ <i>r</i>	/is the centri	petal force		B1 M1 A0	[2]
		allow GM/	r gravitatio $r^2 = v^2 / r$	nal field stre	ngth provide	es/is the centripetal acc	eleration	(B1) (M1)	
	(b)	(i) k e 1/	kinetic en energy $\sqrt{2}mV_0^2 = 0$ $\sqrt{2}^2 = 2GN$	ergy increas GMm/x 1/x	se/change =	= loss/change in (gr	avitational) pot	tential B1 C1	
		١	$V_0 = \sqrt{2G}$	M/x) r use of r not	(y)			A1	[3]
		(ii) \ s	V₀ is (alwa so stone c	ys) <u>greater t</u> ould not ente	<u>han v</u> (for x : er into orbit	= <i>r</i>)		M1 A1	[2]
		(expressio	ns in (a) and	l (b)(i) must :	be dimensionally correc	ct)		
2	(a)	use c both	of kelvin te values of	mperatures (V/ <i>T</i>) correc	t (11.87), V/	<i>T</i> is constant so pressu	ure is constant	B1 M1	[2]
		(allov	v use of n	=1. Do not	allow other v	alues of n.)			
	(b)	(i) v	work done	$= p\Delta V$ = 4.2 × 10 ⁵ = 160 J	⁵ × (3.87 – 3.	49) \times 10 ³ \times 10 ⁻⁶		C1 A1	[2]
		(do not allo	ow use of V	instead of Δ	/)			
		(ii) ii	ncrease/c	change in int	ernal energy	 heating of system + work done on system 	em	C1	
						= 565 - 160 = 405 J		A1	[2]
	(c)	interr no int no po	nal energy termolecu otential en	r = sum of ki lar forces ergy (so ΔU	netic energy = $\Delta E_{\rm K}$)	and potential energy/	$E_{K} + E_{P}$	B1 M1 A1	[3]
3	(a)	resor	nance					B1	[1]
	(b)	<i>Pt</i> = 750 > c = 4	$mc \Delta \theta \\ \times 2 \times 60 = \\ 1400 \mathrm{J kg^{-1}}$	$0.28 \times c \times (K^{-1})$	98 – 25)			C1 C1 A1	[3]
		(use (use	$of \Delta \theta = 7, \\ of t = 2 s$	3 + 273 max not 120 s ma	x. 1/3) xx. 2/3)				

	Page 3		3	Mark Scheme	Syllabus	Paper	
				GCE A LEVEL – May/June 2014	9702	42	
	(c)	e.g e.g (<i>an</i>	. som . cont <i>y sen</i>	e microwave leakage from the cooker ainer for the water is also heated <i>sible suggestion</i>)		B1	[1]
4	(a)	(i)	F _E =	$Q_1Q_2/4\pi\epsilon_0 r^2$ = 8.99 × 10 ⁹ × (1.6 × 10 ⁻¹⁹) ² /(2.0 × 10 ⁻¹⁵) ²		C1	[2]
						7.1	[~]
		(ii)	F _G =	$= Gm_1m_2/r^2$ = 6.67 × 10 ⁻¹¹ × (1.67 × 10 ⁻²⁷) ² /(2.0 × 10 ⁻¹⁵) ²		C1	
			=	$4.7 \times 10^{-33} \text{ N}$		A1	[2]
	(b)	(i)	force mus to ho	e of <u>repulsion</u> (much) greater than force of <u>attraction</u> t be some other force of <u>attraction</u> old nucleus together		B1 M1 A1	[3]
			(Do	not allow if $F_{G} > F_{E}$ in (a) or one of the forces not calcu	lated in (a))		
			(
		(ii)	outs	ide nucleus there is repulsion between protons		B1	
			or	if not short range, all nuclei would stick together		B1	[2]
5	(a)	<u>onl</u> acc	<u>y</u> curv eptat	we with decreasing gradient ble value near $x = 0$ and does not reach zero		M1 A1	[2]
		(if g (no	graph credi	line less than 4.0 cm do not allow A1 mark) it if graph line has positive and negative values of $V_{\rm H})$			
	(b)	gra all µ pea	ph: fro peaks aks at	om 0 to 2 <i>T</i> , two cycles of a sinusoidal wave above 3.5 mV 4.95/5.0 mV (<i>allow 4.8 mV to 5.2 mV</i>)		M1 C1 A1	[3]
	(c)	e.m	n.f. inc	duced in coil when magnetic field/flux is changing/cutt	ing	B1	
		eith so or or	no e.r no e.r at e at e	at each position, magnetic field does not vary n.f. is induced in the coil/no reading on the millivoltme ach position, switch off current and take millivoltmeter ach position, rapidly remove coil from field and take m	ter reading eter reading	B1	[2]
6	(a)	ele	ctric a	ind magnetic fields normal to each other		B1	
		<i>eith</i> or for	ner corr no de	charged particle enters region normal to both fields ect <i>B</i> direction w.r.t. <i>E</i> for zero deflection flection, $v = E/B$		B1 B1	[3]
		(no	cred	t if magnetic field region clearly not overlapping with e	lectric field regio	<i>n</i>)	

	Page 4	Mark Scheme	Syllabus	Paper	
		GCE A LEVEL – May/June 2014	9702	42	
	(b) (i) <i>m</i> = = =	= Bqr/v = (640 × 10 ⁻³ × 1.6 × 10 ⁻¹⁹ × 6.2 × 10 ⁻²)/(9.6 × 10 ⁴) = 6.61 × 10 ⁻²⁶ kg = (6.61 × 10 ⁻²⁶)/(1.66 × 10 ⁻²⁷)u		C1 C1 C1	
	=	= 40 u		A1	[4]
	(ii) q/n q/n ions	$m \propto 1/r$ or <i>m</i> constant <u>and</u> $q \propto 1/r$ <i>n</i> for A is twice that for B is in path A have (same mass but) twice the charge (of i	ons in path B)	B1 B1 B1	[3]
7	(a) angle su by an ar	ubtended at the centre of a circle ic equal in length to the radius		B1 B1	[2]
	(b) (i) arc diar	= distance × angle neter = $3.8 \times 10^5 \times 9.7 \times 10^{-6}$		C1	
		= 3.7 km		A1	[2]
	(ii) Mar ang	rs is (much) further from Earth/away (<i>answer must be o</i> le (at telescope is much) smaller	comparative)	B1 B1	[2]
8	(a) photon e	energy = hc/λ = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8})/(590 \times 10^{-9})$ = 3.37×10^{-19} J		C1 C1	
	number	$= (3.2 \times 10^{-3})/(3.37 \times 10^{-19})$ = 9.5 × 10 ¹⁵ (allow 9.4 × 10 ¹⁵)		A1	[3]
	(b) (i) p = = =	$= h/\lambda$ = (6.63 × 10 ⁻³⁴)/(590 × 10 ⁻⁹) = 1.12 × 10 ⁻²⁷ kg m s ⁻¹		C1 C1	
	tota	I momentum = $9.5 \times 10^{15} \times 1.12 \times 10^{-27}$ = $1.06 \times 10^{-11} \text{kg m s}^{-1}$		A1	[3]
	(ii) forc	$e = 1.06 \times 10^{-11} N$		A1	[1]
9	(a) time for to be red	number of atoms/nuclei/activity (of the isotope) duced to one half (of its initial value)		M1 A1	[2]
	(b) (i) A = 460 N =	$\lambda N = N \times \ln 2 / (8.1 \times 24 \times 60 \times 60)$ 4.6×10^{8}		C1 C1 A1	[3]
	(ii) nun	hber of water molecules in 1.0 kg = $(6.02 \times 10^{23})/(18 \times 10^{25})$ = 3.3×10^{25}	× 10 ⁻³)	C1	
	ratio	$p = (3.3 \times 10^{25})/(4.6 \times 10^{8}) = 7.2 (7.3) \times 10^{16}$		A1	[2]

	Page 5		Mark Scheme Syllabus		Paper	
			GCE A LEVEL – May/June 2014	9702	42	
	(c) A = 170 t =	= A ₀ e 0 = 46 11.6	$\lambda^{-\lambda t} \frac{\text{and}}{2} \lambda t_{\frac{1}{2}} = \ln 2$ 50 exp (-{ln 2 t}/8.1) days (allow 2 s.f.)		C1 C1 A1	[3]
			Section B			
10	(a) cor	npare	s the potentials/voltages at the (inverting and non-inve	erting) <u>inputs</u>	B1	
	<i>eith</i> or sta	<i>her</i> V⁺ tes th	output (potential) dependent on which input is the V^{-} , then V_{OUT} is positive e other condition	larger	B1 B1	[3]
	(b) (i)	ring	drawn around both the LEDs (and series resistors)		B1	[1]
	(ii)	V [−] = (allo	$(1.5 \times 2.4)/(1.2 + 2.4) = 1.0 V$ w $1.5 \times 2.4/3.6 = 1.0 V$		B1	[1]
	(iii)	1.	V_{OUT} switches at +1.0 V maximum V_{OUT} is 5.0 V when curve is above +1.0 V, V_{OUT} is negative (<i>or v.v.</i>)		B1 B1 B1	[3]
		2.	at time t_1 , diode R is emitting light, diode G is not emitt at time t_2 , diode R is not emitting, diode G is emitting (<i>must be consistent with graph line. If no graph line the</i>	ting en 0/2)	B1 B1	[2]
11	(a) X-r	ay: fl re	at/shadow/2D image egardless of depth of object/depth not indicated		B1 B1	
	СТ	scan	: built up from (many) images at different angles image is three-dimensional image can be rotated/viewed at different angles		B1 B1 B1	[5]
	(b) (i)	<i>I</i> =	$I_0 e^{-\mu x}$		C1	
		0.25 x =2	2.0 mm (<i>allow 1 s.f.</i>)		A1	[2]
	(ii)	for a	luminium, $I/I_0 = e^{-0.46 \times 2.4}$ = 0.33		C1	
		fract	tion = 0.33×0.25 = 0.083		A1	[2]
	(iii)	gain	$/dB = 10 \log(I/I_0)$ = 10 lg(0.083)		C1	
		with	= (-) 10.8 dB (allow 2 s.f.) negative sign		A1 B1	[3]
12	(a) (i)	sate trave perio	llite is in equatorial orbit elling from west to east od of 24 hours/1 day		B1 B1 B1	[3]

Page 6	Mark Scheme	Syllabus	Paper	,
	GCE A LEVEL – May/June 2014	9702	42	
(ii) eith or pre	er uplink signal is highly attenuated signal is highly amplified (before transmission) a vents downlink signal swamping the uplink signal	s downlink signal	B1 B1	[2]
(b) speed o optic fib time de	f signal is same order of magnitude in both systems re link (much) shorter than via satellite ay using optic fibre is less		B1 M1 A1	[3]