MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Pa		ige 2		Mark Scheme	Syllabus	Paper	,
				GCE AS/A LEVEL – May/June 2014 9702		22	
1	(a)	pow forc	ver = :e: kg	energy/time <i>or</i> work done/time gms ⁻² (including from <i>mg</i> in <i>mgh</i> or <i>Fv</i>)		B1	
		or k	ineti	c energy $(\frac{1}{2}mv^2)$: kg (m s ⁻¹) ²		B1	
		(dis	tance	e: m and $(time)^{-1}$: s ⁻¹) and hence power: kg m s ⁻² m s ⁻¹	= kg m ² s ⁻³	B1	[3]
	(b)	A: r corr	n² ar rect s	$m^2 s^{-3}$ ad <i>x</i> : m and <i>T</i> : K substitution into <i>C</i> = (Q <i>x</i>) / <i>t</i> A <i>T</i> or equivalent, or with car <i>C</i> : kg m s ⁻³ K ⁻¹	ncellation	C1 C1 C1 A1	[4]
2	(a)		: m/\ (= d ²	$(2^{2}/4) \times t = 7.67 \times 10^{-7} \text{m}^{3}$		C1	
		ρ=	(9.6	$(14) \times 10^{-3}$ / $[\pi (22.1/2 \times 10^{-3})^2 \times 2.00 \times 10^{-3}]$ 13 kg m ⁻³ (allow 2 or more s.f.)		C1 A1	[3]
	(b)	(i)	$\Delta ho l$	$\rho = \Delta m/m + \Delta t/t + 2\Delta d/d$		C1	
				= 5.21% + 0.50% + 0.905% [or correct fractional up	ncertainties]	C1	
				= 6.6% (6.61%)		A1	[3]
		(ii)	ρ=	$12500 \pm 800 \mathrm{kg}\mathrm{m}^{-3}$		A1	[1]
3	(a)	a body/mass/object continues (at rest or) at constant/uniform velocity unless acted on by a <u>resultant</u> force		ess B1	[1]		
	(b)	(i)		ght <u>vertically</u> down nal/reaction/contact (force) perpendicular/normal <u>to t</u>	<u>he slope</u>	B1 B1	[2]
		(ii)	1.	acceleration = gradient or $(v - u)/t$ or $\Delta v/t$ = $(6.0 - 0.8)/(2.0 - 0.0) = 2.6 \text{ m s}^{-2}$		C1 M1	[2]
			2.	F = ma = 65 × 2.6 = 169 N (allow to 2 or 3 s.f.)		A1	[1]
			3.	weight component seen: $mg \sin\theta$ (218 N) 218 – $R = 169$ R = 49 N (require 2 s.f.)		C1 C1 A1	[3]

	Page 3			Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2014 9702		22	
4	(a)	GPE: energy of a <u>mass</u> due to its position in a <u>gravitational field</u> KE: energy (a mass has) due to its motion/speed/velocity				B1 B1	[2]
	(b)	(i)	1.	$KE = \frac{1}{2} mv^2$		C1	
				$=\frac{1}{2}\times0.4\times(30)^2$		C1	
				= 180 J		A1	[3]
			2.	$s = 0 + \frac{1}{2} \times 9.81 \times (2.16)^2$ or $s = (30 \sin 45^\circ)^2 / (2$	× 9.81)	C1	
				= 22.88 (22.9) m = 22.94 (22.9) m		A1	[2]
			3.	GPE = <i>mgh</i> = 0.4 × 9.81 × 22.88 = 89.8 (90) J		C1 A1	[2]
		(ii)	1.	KE = initial KE – GPE = 180 – 90 = 90 J		A1	[1]
			2.	(horizontal) velocity is not zero/(object) is still moving in terms of conservation of energy	/answer explaine	d B1	[1]
5	(a)	(Yo	ung	modulus/ <i>E</i> =) stress/strain		B1	[1]
	(b)	(i)	stre	ess = F/A			
			or or	$= F / (\pi d^{2}/4) = F / (\pi d^{2})$		M1	
			ratio	o = 4 (or 4:1)		A1	[2]
		(ii)		the same for both wires (as same material) [e.g. $E_{\rm P}$ = $I_{\rm P}$	Ξ _Q]	M1	
				ain = stress <i>/E</i> o = 4 (or 4:1) [<i>must be same as (i)]</i>		A1	[2]
6	(a)			e no lost volts/energy lost in the battery are no lost volts/energy lost in the internal resistance		B1	[1]
	(b)			ent/I decreases (as R increases) creases (as R increases)		M1 A1	
		or					
				allel resistance (of X and <i>R</i>) increases oss parallel resistors increases, so p.d. (across Y) decre	eases	M1 A1	[2]

Page 4				Syllabus	Paper	•
			GCE AS/A LEVEL – May/June 2014	9702	22	
	(c)	(i)	current = 2.4 (A) p.d. across AB = $24 - 2.4 \times 6 = 9.6 V$		C1 M1	
			or			
			total resistance = 10Ω (= $24V/2.4A$) (parallel resistance = 4Ω), p.d. = $24 \times (4/10) = 9.6 V$		C1 M1	[2]
		. ,	R (AB) = 9.6/2.4 = 4.0 Ω 1/6 + 1/X = 1/4 [must correctly substitute for R] X = 12 Ω		C1 C1 A1	
			or			
			$I_{R} = 9.6/6.0 = 1.6 (A)$ $I_{X} = 2.4 - 1.6 = 0.8 (A)$ $X (= 9.6/0.8) = 12 \Omega$		(C1) (C1) (A1)	[3]
	(iii)	power = VI or EI or V^2/R or E^2/R or I^2R		C1	
			$= 24 \times 2.4 \text{ or } (24)^2 / 10 \text{ or } (2.4)^2 \times 10$ = 57.6 W (allow 2 or more s.f.)		A1	[2]
	(d)	pow	ver decreases		MO	
			<u>a.f.</u> constant or power = $24 \times \text{current}$, and current decreases <u>e.m.f</u> . constant or power = 24^2 /resistance, and resistance in		A1	[1]
7	(a)	<u>wav</u>	<u>es</u> from the double slit are coherent/constant phase differ	ence	B1	
		<u>wav</u>	<u>ves</u> (from each slit) overlap/superpose/meet (not interfere)	B1	
		maximum/bright fringe where path difference is $n\lambda$ or phase difference is $n360^{\circ}/2\pi n$ rad				
		or minimum/dark fringe where path difference is $(n + \frac{1}{2})\lambda$				
		<i>or</i> p	whase difference is $(2n + 1) 180^{\circ}/(2n + 1)\pi$ rad		B1	[3]
	(b)	ν = 1 λ =	fλ (3 × 10 ⁸) / 670 × 10 ¹² = 448 (or 450) (nm)		C1 M1	[2]
	(c)		12 / 9 = $D\lambda/w$) = $(2.8 \times 450 \times 10^{-9})/(12 / 9 \times 10^{-3})$ [allow nm, r = 9.5×10^{-4} m [9.4×10^{-4} m using λ = 448 nm]	nm]	C1 C1 A1	[3]
	(d)	•	l light has) larger/higher/longer wavelength (must be com ges further apart/larger separation	parison)	M1 A1	[2]