CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	42

Section A

1	in	force is proportional to the product of the masses and inversely proportional to the square of the separation either point masses or separation >> size of masses			
	(b) (i	gravitational force provides the centripetal force $mv^2/r = GMm/r^2$ and $E_K = \frac{1}{2}mv^2$ hence $E_K = GMm/2r$	B1 M1 A0	[2]	
	(ii	1. $\Delta E_{\rm K} = \frac{1}{2} \times 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^6\}^{-1} - \{7.34 \times 10^6\}^{-1})$ = 9.26 × 10 ⁷ J (ignore any sign in answer) (allow 1.0 × 10 ⁸ J if evidence that $E_{\rm K}$ evaluated separately for each r)	C1 A1	[2]	
		2. $\Delta E_P = 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^6\}^{-1} - \{7.34 \times 10^6\}^{-1})$ = 1.85 × 10 ⁸ J (ignore any sign in answer) (allow 1.8 or 1.9 × 10 ⁸ J)	C1 A1	[2]	
	(iii	either $(7.30 \times 10^6)^{-1}$ – $(7.34 \times 10^6)^{-1}$ or $\Delta E_{\rm K}$ is positive/E _K increased speed has increased	M1 A1	[2]	
2	(a) (i	sum of potential energy and kinetic energy of atoms/molecules/particles reference to random	M1 A1	[2]	
	(ii	no intermolecular forces no potential energy internal energy is kinetic energy (of random motion) of molecules (reference to random motion here then allow back credit to (i) if M1 scored)	B1 B1 B1	[3]	
	ei	netic energy ∞ thermodynamic temperature ther temperature in Celsius, not kelvin so incorrect temperature in kelvin is not doubled	B1 B1	[2]	
3		mperature of the spheres is the same o (net) transfer of energy between the spheres	B1 B1	[2]	
	(b) (i	power = $m \times c \times \Delta\theta$ where m is mass per second $3800 = m \times 4.2 \times (42 - 18)$ $m = 38 \mathrm{g s^{-1}}$	C1 C1 A1	[3]	
	(ii	some thermal energy is lost to the surroundings so rate is an overestimate	M1 A1	[2]	
4	sh ne	raight line through origin nows acceleration proportional to displacement egative gradient nows acceleration and displacement in opposite directions	M1 A1 M1 A1	[4]	

	uge c		mark concine	Oynabas	i apci	
			GCE AS/A LEVEL – October/November 2012	9702	42	
(b)	(i)	2.8 c	m		A1	[1]
	(ii)	gradi	er gradient = ω^2 and $\omega = 2\pi f$ or $a = -\omega^2 x$ and $\omega = 2\pi f$ ient = 13.5/(2.8 × 10 ⁻²) = 482		C1	
			22 rad s ⁻¹		C1	
		frequ	uency = (22/2π =) 3.5 Hz		A1	[3]
(c)	e.g	. <u>uppe</u>	r spring may not be extended repring may exceed limit of proportionality/elastic limit sible suggestion)		B1	[1]
(a)	(i)		of charge and potential (difference)/voltage		D4	[4]
		(rauc	o must be clear)		B1	[1]
	(ii)	capa	icitor has equal magnitudes of (+)ve and (-)ve charge		B1	
	` ,	total	charge on capacitor is zero (so does not store charge)		B1	
		` '	e and (-)ve charges to be separated		M1	- 43
		work	done to achieve this so stores energy		A1	[4]
(b)	(i)	capa	icitance of Y and Z together is 24 μF		C1	
(5)	(-)		= 1/24 + 1/12		01	
		C = 8	8.0 μF (<i>allow</i> 1 s.f.)		A1	[2]
	(ii)	some	e discussion as to why all charge of one sign on one pla	te of X	B1	
			$(CV =) 8.0 \times 10^{-6} \times 9.0$		M1	
		= 72	•		A0	[2]
	(iii)		$V = (72 \times 10^{-6})/(12 \times 10^{-6})$ = 6.0 V (allow 1 s.f.) (allow 72/12)		A1	[1]
		-	- 0.0 V (allow 1 S.I.) (allow 12/12)		AI	[1]
			either Q = $12 \times 10^{-6} \times 3.0$ or charge is shared between	∕ and Z	C1	
			charge = 36 μC Must have correct voltage in (iii) 1 if just quote of 36 <i>μC i</i> i	n (iii) 2.	A1	[2]
				• /		
(a)	(i)		cle must be moving		M1	
		with	component of velocity normal to magnetic field		A1	[2]
	(ii)	F = E	Bq v sin $ heta$		M1	
	(,		and $ heta$ explained		A1	[2]
(b)	(i)	face	BCGF shaded		A1	[1]
	(ii)	betw	een face BCGF and face ADHE		A1	[1]
, ,	•	4: !			B # 4	
(c)			difference gives rise to an <u>electric</u> field = <i>qE</i> (<i>no need to explain symbols</i>)		M1	
			c field gives rise to force (on an electron)		A1	[2]
	٥, ١		2 3 (on an oldaion)		, , ,	[-]

Mark Scheme

Syllabus

Paper

Page 3

7	(a)						M1 A1	[2]							
	(b)	(i)		reduce gnetised	flux	losses/i	increas	e flux	(linkaç	ge/easi	ly m	agnetised	<u>and</u>	B1	[1]
			cause	<u>educe</u> en d by edd <i>1 mark f</i>	y curr	ents	`		llow 'to	prevent	t ener	gy losses')		M1 A1	[2]
		(ii)	gives I	ating curr rise to (cl ks the <u>se</u> raday's l	hangi econd	ng) flux i <u>ary coil</u>		uces (e.m.f. (i	n secon	ndary	coil)		B1 B1 M1 A1	[4]
8	(a)		discrete quantity/packet/quantum of energy of electromagnetic radiation energy of photon = Planck constant × frequency		B1 B1	[2]									
	(b)	rate mai mai	threshold frequency rate of emission is proportional to intensity (1) max. kinetic energy of electron dependent on frequency max. kinetic energy independent of intensity (1) (any three, 1 each, max 3)					В3	[3]						
	(c)	$\lambda =$ ene	ergy = 4	<i>hc/λ</i> n to give .4 × 10 ⁻¹ 5 eV so r			wo to	give λ	= <i>eV</i> action of . = 355 < 450 nr	nm				C1 M1 A1	[3]
		thre	eshold f) nm = 6	nction = 3 requency 5.67×10 ¹² Hz < 8.2	/ = 8. ⁴ Hz	45×10 ¹⁴ ł	Ηz							C1 M1 A1	

Mark Scheme
GCE AS/A LEVEL – October/November 2012

Syllabus 9702 Paper 42

Page 4

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	42

Section B

9	(a)	infir infir infir infir	zero output impedance/resistance nite input impedance/resistance nite (open loop) gain nite bandwidth nite slew rate ach, max. 3	В3	[3]
		(i) (ii)	graph: square wave correct cross-over points where $V_2 = V_1$ amplitude 5 V correct polarity (positive at $t = 0$) correct symbol for LED diodes connected correctly between V_{OUT} and earth correct polarity consistent with graph in (i) (R points 'down' if (i) correct)	M1 A1 A1 A1 M1 A1	[4] [3]
10	of o all in ima ima ima ima that	ne s mag ges ges ge fo ge fo	nages taken from different angles / X-rays directed from different angles section / slice (1) es in the same plane (1) combined to give image of section / slice of successive sections / slices combined ormed using a computer ormed is 3D image (1) be rotated / viewed from different angles (1) marks plus any two additional marks)	B1 B1 B1 B1	[6]
11	(a) (b)	exti mul digi data any	noise can be eliminated/filtered/signal can be regenerated ra bits can be added to check for errors liplexing possible tal circuits are more reliable/cheaper a can be encrypted for security sensible advantages, 1 each, max. 3 1. higher frequencies can be reproduced	B3 B1	[3] [1]
			2. smaller changes in loudness/amplitude can be detected	B1	[1]
		(ii)	bit rate = $44.1 \times 10^3 \times 16$ = $7.06 \times 10^5 \text{ s}^{-1}$ number = $7.06 \times 10^6 \times 340$	C1	ι,1
			$= 2.4 \times 10^8$	A1	[2]
12	(a)	(i)		B1	[1]
		(ii)	outer of coaxial cable is earthed outer shields the core from noise/external signals	B1 B1	[2]

3			- j		
		GCE AS/A LEVEL – October/November 2012	9702	42	
(b)	attenuati	ion per unit length = $1/L \times 10 \lg(P_2/P_1)$ ower at receiver = $10^{2.5} \times 3.8 \times 10^{-8}$		C1	
		$= 1.2 \times 10^{-5} \text{W}$		C1	
	attenuati	ion in wire pair = $10 \log(3.0 \times 10^{-3})/(1.2 \times 10^{-5})$			
	attanuati	= 24 dB ion per unit length = 24 / 1.4		C1	
	auenuau	= 17 dB km ⁻¹		A1	[4]

Syllabus

Paper

Mark Scheme

(other correct methods of calculation are possible)

Page 6