MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2012	9702	41	
		Section A			
1	(a) force is inverse <i>either</i> p	proportional to the product of the masses and ly proportional to the square of the separation point masses <i>or</i> separation >> size of masses		M1 A1	[2]
	(b) (i) gra <i>mv</i> hei	evitational force provides the centripetal force ${}^{2}/r = GMm/r^{2}$ and $E_{\rm K} = {}^{1}/_{2}mv^{2}$ nce $E_{\rm K} = GMm/2r$		B1 M1 A0	[2]
	(ii) 1.	$\Delta E_{\rm K} = \frac{1}{2} \times 4.00 \times 10^{14} \times 620 \times ({7.30 \times 10^6}^{-1} - {7.34 \times 9.26 \times 10^7} \text{J} (ignore any sign in answer) (allow 1.0 \times 10^8 \text{J} if evidence that } E_{\rm K} evaluated separate$	10 ⁶ } ⁻¹) ely for each r)	C1 A1	[2]
	2.	$\Delta E_{\rm P} = 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^{6}\}^{-1} - \{7.34 \times 10^{6}\}^{-1} = 1.85 \times 10^{8} \text{ J} \text{ (ignore any sign in answer)}$ (allow 1.8 or 1.9 × 10 ⁸ J)	.1)	C1 A1	[2]
	(iii) <i>eitl</i> spe	her $(7.30 \times 10^6)^{-1}$ – $(7.34 \times 10^6)^{-1}$ or ΔE_K is positive / E_K indeed has increased	creased	M1 A1	[2]
2	(a) (i) sur refe	n of potential energy and kinetic energy of atoms/molecu erence to random	ules/particles	M1 A1	[2]
	(ii) no no inte (<i>re</i>	intermolecular forces potential energy ernal energy is kinetic energy (of random motion) of mole ference to random motion here then allow back credit to (cules (i) if M1 scored	B1 B1 B1)	[3]
	(b) kinetic	energy ∞ thermodynamic temperature		B1	
	or temp	perature in kelvin is not doubled		B1	[2]
3	(a) tempera no (net	ature of the spheres is the same) transfer of energy between the spheres		B1 B1	[2]
	(b) (i) pov 380 <i>m</i>	wer = $m \times c \times \Delta \theta$ where <i>m</i> is mass per second $m \times 4.2 \times (42 - 18)$ = 38 g s^{-1}		C1 C1 A1	[3]
	(ii) sor so	ne thermal energy is lost <u>to the surroundings</u> rate is an overestimate		M1 A1	[2]
4	(a) straight shows negativ shows	line through origin acceleration proportional to displacement e gradient acceleration and displacement in opposite directions		M1 A1 M1 A1	[4]

	Page 3			Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2012	9702	41	
	(b)	(i)	2.8 c	cm		A1	[1]
		(ii)	<i>eithe</i> grad	er gradient = ω^2 and $\omega = 2\pi f$ or $a = -\omega^2 x$ and $\omega = 2\pi f$ lient = 13.5/(2.8 × 10 ⁻²) = 482		C1	
			<i>ω</i> =) freq	22 rad s ⁻¹ uency = (22/2π =) 3.5 Hz		C1 A1	[3]
	(c)	e.g. e.g. (<i>an</i>	. <u>lowe</u> . <u>uppe</u> y sen	e <u>r</u> spring may not be extended er spring may exceed limit of proportionality/elastic limit <i>sible suggestion</i>)		B1	[1]
5	(a)	(i)	ratio (<i>rati</i> o	of charge and potential (difference)/voltage o <i>must be clear</i>)		B1	[1]
		(ii)	capa <u>total</u> (+)ve work	acitor has equal magnitudes of (+)ve and (-)ve charge charge on capacitor is zero (so does not store charge) e and (-)ve charges to be separated c done to achieve this so stores energy		B1 B1 M1 A1	[4]
	(b)	(i)	capa 1/C	acitance of Y and Z together is 24 μ F = 1/24 + 1/12		C1	[0]
			C =	δ.0 μF (anow 1 S.I.)		AI	[2]
		(ii)	som Q = = 72	e discussion as to why all charge of one sign on one pla $(CV =) \frac{8.0 \times 10^{-6}}{2 \mu C} \times 9.0$	te of X	B1 M1 A0	[2]
		(iii)	1.	V = (72 × 10 ⁻⁶)/(12 × 10 ⁻⁶) = 6.0 V (<i>allow</i> 1 s.f.) (allow 72/12)		A1	[1]
			2.	either Q = 12 × 10 ⁻⁶ × 3.0 or charge is shared between charge = 36 μ C Must have correct voltage in (iii)1 if just quote of 36 μ C i	Y and Z n (iii) 2.	C1 A1	[2]
6	(a)	(i)	parti with	cle must be moving component of velocity normal to magnetic field		M1 A1	[2]
		(ii)	F = 1 q, v	Bqv sin θ and θ explained		M1 A1	[2]
	(b)	(i)	face	BCGF shaded		A1	[1]
		(ii)	betw	veen face BCGF and face ADHE		A1	[1]
	(c)	c) potential difference gives rise to an <u>electric</u> field					
		ore	electri	c field gives rise to force (on an electron)		A1	[2]

	Page 4		Mark Scheme				Syllabus		Paper			
				GCE AS/A LEVEL – October/November 2012				9702		41		
7	(a)	induced e.m.f./current produces effects/acts in such a direction/tends to oppose the change causing it					M1 A1	[2]				
	(b)	(i) 1. to reduce flux losses/increase flux linkage/easily magnetised and demagnetised					and	B1	[1]			
		 to <u>reduce</u> energy / heat losses (do not allow 'to prevent energy losses') caused by eddy currents (allow 1 mark for 'reduce eddy currents') 							M1 A1	[2]		
		 (ii) alternating current/voltage gives rise to (changing) flux in core flux links the <u>secondary coil</u> (by Faraday's law) changing flux induces e.m.f. (in secondary coil) 							B1 B1 M1 A1	[4]		
8	(a)	discrete quantity/packet/quantum of energy of electromagnetic radiation energy of photon = Planck constant × frequency						B1 B1	[2]			
	(b)	threshold frequency(1)rate of emission is proportional to intensity(1)max. kinetic energy of electron dependent on frequency(1)max. kinetic energy independent of intensity(1)(any three, 1 each, max 3)(1)					В3	[3]				
	(c)	$either \lambda = \lambda$	e <i>r E</i> : 450 r rav =	= <i>hc/λ</i> nm to give 4 4 × 10 ⁻¹	⁹ or 23	8 eV	or $hc/\lambda =$ work function give λ	eV ction of 3.5 eV = 355 nm			C1 M1	
		2.8	eV <	3.5 eV so r	no emi	ssion	355 nm <	450 nm so no			A1	[3]
		<i>or</i> w thre: 450 6.67	ork f sholo nm = ' × 1(unction = 3 I frequency 6.67×10 ¹²) ¹⁴ Hz < 8.4	8.5eV / = 8.4 ¹ Hz 15 × 1(5×10 ¹⁴ Hz 0 ¹⁴ Hz					C1 M1 A1	

	Page 5			Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2012	9702	41	
				Section B			
9	(a) e.g. zero infinite ir infinite (d infinite b infinite s			output impedance/resistance put impedance/resistance open loop) gain andwidth ew rate			
			B3	[3]			
	(b)	(i)	grap	h: square wave		M1	
			amp	litude 5V		A1 A1	
			corre	ect polarity (<i>positive at t = 0</i>)		A1	[4]
		(ii)	corre	ect symbol for LED		M1	
		. ,	diod	es connected correctly between V_{OUT} and earth		A1	
			corre (R p	ect polarity consistent with graph in (i) oints 'down' if (i) correct)		A1	[3]
10	X-ra	ay in	nages	taken from different angles / X-rays directed from different	ent angles	B1	
	ot c الع	ne s	ectioi	1/SIICE the same plane	(1)		
	ima	iges	comb	ined to give image of section/slice	(1)	B1	
	ima	iges	of su	ccessive sections/slices combined		B1	
	ima	ige fo	ormed	d using a computer		B1	
	Ima	ige fo		1 IS 3D IMage	(1)		
	(for	ir B-i	marks	s plus any two additional marks)	(1)	B2	[6]
11	(a)	e.g. exti mul	noise a bits tiplex	e can be eliminated/filtered/signal can be regenerated can be added to check for errors ing possible			
		data	a can	be encrypted for security			
		any	' sens	ible advantages, 1 each, max. 3		B3	[3]
	(b)	(i)	1. hi	gher frequencies can be reproduced		B1	[1]
			2. sr	naller changes in loudness/amplitude can be detected		B1	[1]
		(ii)	bit ra	ate = $44.1 \times 10^3 \times 16$ = $7.06 \times 10^5 \text{ s}^{-1}$ ber = $7.06 \times 10^6 \times 340$		C1	
			num	$= 2.4 \times 10^{8}$		A1	[2]
12	(a)	(i)	signa	al in one wire (pair) is picked up by a neighbouring wire	(pair)	B1	[1]
		(ii)	oute oute	r of coaxial cable is earthed r shields the core from noise/external signals		B1 B1	[2]

Page 6	Mark Scheme	Syllabus	Paper	,
	GCE AS/A LEVEL – October/November 2012	9702	41	
(b) attenuat signal po	ion per unit length = $1/L \times 10 \log(P_2/P_1)$ ower at receiver = $10^{2.5} \times 3.8 \times 10^{-8}$		C1	
5 T		C1		
attenuat	ion in wire pair = $10 \log((3.0 \times 10^{-3})/(1.2 \times 10^{-5}))$ = 24 dB		C1	
attenuat	ion per unit length = $24/1.4$		•	
	$= 17 \text{ dB km}^{-1}$		A1	[4]
(other co	prrect methods of calculation are possible)			

ľ