UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9702	41

Section A

B1 (a) work done in bringing unit mass from infinity (to the point) [1] (b) gravitational force is (always) attractive **B**1 either as r decreases, object/mass/body does work work is done by masses as they come together **B**1 [2] or (c) either force on mass = mg (where g is the acceleration of free fall /gravitational field strength) B1 $g = GM/r^2$ B1 if $r \otimes h$, g is constant **B**1 ΔE_{P} = force × distance moved M1 = mghΑ0 $\Delta E_{P} = m\Delta \phi$ (C1) or $= GMm(1/r_1 - 1/r_2) = GMm(r_2 - r_1)/r_1r_2$ (B1) if $r_2 \approx r_1$, then $(r_2 - r_1) = h$ and $r_1 r_2 = r^2$ (B1) $g = GM/r^2$ (B1) $\Delta E_{P} = mgh$ (A0)[4] (d) $\frac{1}{2}mv^2 = m\Delta\phi$ $v^2 = 2 \times GM/r$ C1 $= (2 \times 4.3 \times 10^{13}) / (3.4 \times 10^{6})$ C1 $v = 5.0 \times 10^3 \,\mathrm{m \, s^{-1}}$ **A1** [3] (Use of diameter instead of radius to give $v = 3.6 \times 10^3 \,\mathrm{m\,s^{-1}}$ scores 2 marks) 2 (a) (i) either random motion or constant velocity until hits wall/other molecule **B**1 [1] (ii) (total) volume of molecules is negligible M1 compared to volume of containing vessel Α1 radius/diameter of a molecule is negligible (M1)compared to the average intermolecular distance [2] (A1) (b) either molecule has component of velocity in three directions $c^2 = c_X^2 + c_Y^2 + c_Z^2$ M1 random motion and averaging, so $\langle c_X^2 \rangle = \langle c_Y^2 \rangle = \langle c_Z^2 \rangle$ M1 $< c^2 > = 3 < c_X^2 >$ **A1** so, $pV = \frac{1}{3}Nm < c^2 >$ [3] Α0 (c) $\langle c^2 \rangle \propto T$ or $c_{\rm rms} \propto \sqrt{T}$ C1 temperatures are 300 K and 373 K C1 $c_{\rm rms} = 580 \,\rm m \, s^{-1}$ Α1 [3] (Do not allow any marks for use of temperature in units of °C instead of K)

	rage 3		Mark Scheme, reachers version	Syllabus	Faper	
			GCE AS/A LEVEL – May/June 2012	9702	41	
3	(a)	the state without a	numerically equal to) quantity of (thermal) energy required to change ne state of unit mass of a substance without any change of temperature Allow 1 mark for definition of specific latent heat of fusion/vaporisation)		M1 A1	[2]
	(b)	either	energy supplied = 2400 × 2 × 60 = 288000 J energy required for evaporation = 106 × 2260 = 240 difference = 48000 J rate of loss = 48000 / 120 = 400 W		C1 C1 A1	
		or	energy required for evaporation = $106 \times 2260 = 240$ power required for evaporation = $240000 / (2 \times 60) = 2$ rate of loss = $2400 - 2000 = 400$ W		(C1) (C1) (A1)	[3]
4	(a)	T = 0.6	$^{2} \times 2.0 \times 10^{-2}$) / (0.6) ²		C1 C1	F01
	(b)	sinusoid	ms ² al wave with all values positive s positive, all peaks at E_{K} and energy = 0 at t = 0		B1 B1	[3]
		period =			B1	[3]
5	. ,	·	r unit positive charge acting on a stationary charge		B1	[1]
	(b)	Q =	$Q / 4\pi\epsilon_0 r^2$ = 1.8 × 10 ⁴ × 10 ² × 4 π × 8.85 × 10 ⁻¹² × (25 × 10 ⁻²) ² = 1.25 × 10 ⁻⁵ C = 12.5 μ C		C1 M1 A0	[2]
		= =	$Q / 4\pi\epsilon_0 r$ (1.25 × 10 ⁻⁵) / (4 π × 8.85 × 10 ⁻¹² × 25 × 10 ⁻²) 4.5 × 10 ⁵ V not allow use of V = Er unless explained)		C1 A1	[2]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 3

	Page 4	Mark Scheme: Teachers' version Syllabu GCE AS/A LEVEL – May/June 2012 9702	ıs Pape	er
6	(a) (i)	peak voltage = 4.0 V	A1	[1]
U	. , . , .			[1]
	` ,	r.m.s. voltage (= $4.0/\sqrt{2}$) = 2.8 V	A1	[1]
	ì	period $T = 20 \text{ms}$ frequency = 1 / (20 × 10 ⁻³)	M1 M1	
	1	frequency = 50 Hz	A0	[2]
	(b) (i)	change = 4.0 - 2.4 = 1.6 V	A1	[1]
	(ii)	$\Delta Q = C\Delta V \text{ or } Q = CV$ = 5.0 × 10 ⁻⁶ × 1.6 = 8.0 × 10 ⁻⁶ C	C1 A1	[0]
	/:::\			[2]
		discharge time = 7 ms current = $(8.0 \times 10^{-6}) / (7.0 \times 10^{-3})$	C1 M1	
		$= 1.1(4) \times 10^{-3} \text{A}$	A0	[2]
		age p.d. = 3.2V	C1	
	resis	tance = $3.2 / (1.1 \times 10^{-3})$ = 2900Ω (allow 2800Ω)	A1	[2]
7	(a) sketo	ch: concentric circles (minimum of 3 circles) separation increasing with distance from wire	M1 A1	
		correct direction	B1	[3]
	(b) (i) a	arrow direction from wire B towards wire A	B1	[1]
		either reference to Newton's third law	N/1	
		or force on each wire proportional to product of the two currents so forces are equal	M1 A1	[2]
	(a) force	alwaya tawarda wira Alahwaya in sama direction	B1	
	varie	e <u>always</u> towards wire A/ <u>always</u> in same direction es from zero (to a maximum value) (1) tion is sinusoidal / sin² (1)	ы	
	(at) t	wice frequency of current (1) two, one each)	B2	[3]
	(arry	two, one each	DZ.	[o]
8		et/quantum/discrete amount of energy	M1 A1	
	(allo	ectromagnetic radiation w 1 mark for 'packet of electromagnetic radiation')		[0]
	ener	gy = Planck constant × frequency <i>(seen here or in b)</i>	B1	[3]
	` '	(coloured) line corresponds to one wavelength/frequency	B1	
	impli	gy = Planck constant × frequency es specific energy change between energy levels	B1	[0]
	so di	screte levels	A0	[2]

	Page 5		5	Mark Scheme: Teachers' version	Syllabus	Pape	r
				GCE AS/A LEVEL – May/June 2012	9702	41	
9	(a)	(i)	eithe or	probability of decay (of a nucleus) per unit time $\lambda = (-)(dN/dt) / N$ $(-)dN/dt \text{ and } N \text{ explained}$		M1 A1 (M1) (A1)	[2]
		(ii)	½ = In (½	me $t_{1/2}$, number of nuclei changes from N_0 to $1/2N_0$ exp $(-\lambda t_{1/2})$ or $2 = \exp(\lambda t_{1/2})$ $2/2 = -\lambda t_{1/2}$ and $2/2 = -\lambda t_{1/2}$ and $2/2 = \lambda t_{1/2}$ and $2/2 = \lambda t_{1/2}$ and $2/2 = \lambda t_{1/2}$	In 2 = 0.693	B1 B1 B1 A0	[3]
	(b)	λ =	0.107	8 exp(-8λ) 7 (hours ⁻¹) nours <i>(do not allow 3 or mor</i> e SF)		C1 C1 A1	[3]
	(c)	bac dau	ckgrou ughter	lom nature of decay und radiation r product is radioactive sensible suggestions, 1 each)		B2	[2]

	Page 6				Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2012 9702			41
Sec	ction	В					
10	(a)	ligh	t-dep	endent resistor (allow LDR)		B1	[1]
	(b)	(i)		resistors in series between +5 V line and earth point connected to inverting input of op-amp		M1 A1	[2]
		(ii)	-	coil between diode and earth ch between lamp and earth		M1 A1	[2]
	(c)	(i)		ch on/off mains supply using a low voltage/current outp w 'isolates circuit from mains supply')	out	B1	[1]
		(ii)		will switch on for one polarity of output (voltage) ches on when output (voltage) is negative		C1 A1	[2]
11	(a)	(i)		radiation produced whenever charged particle is acce trons hitting target have distribution of accelerations	elerated	M1 A1	[2]
		(ii)	eithe or or all el	wavelength shorter/shortest for greater/greatest a $\lambda_{\min} = hc/E_{\max}$ minimum wavelength for maximum energy lectron energy given up in one collision/converted to si		B1 B1	[2]
	(b)	(i)		ness measures the penetration of the beam ter hardness, greater penetration		C1 A1	[2]
		(ii)		rolled by changing the anode voltage er anode voltage, greater penetration/hardness		C1 A1	[2]
	(c)	(i)	_	-wavelength radiation more likely to be absorbed in the y to penetrate through body	e body/less	B1	[1]
		(ii)	(alur	minium) filter/metal foil placed in the X-ray beam		B1	[1]
12	(a)		_	niform (magnetic) field		M1	
		or	n-unifo	aligns nuclei gives rise to Larmor/resonant frequency in r.f. region orm (magnetic) field enables nuclei to be located		A1 M1	
		or		changes the Larmor/resonant frequency		A1	[4]
	(b)	(i)	diffe	rence in flux density = $2.0 \times 10^{-2} \times 3.0 \times 10^{-3} = 6.0 \times 10^{-3}$	0 ⁻⁵ T	A1	[1]
		(ii)		$= 2 \times c \times \Delta B$		C1	
				$= 2 \times 1.34 \times 10^8 \times 6.0 \times 10^{-5}$ $= 1.6 \times 10^4 \text{ Hz}$		A1	[2]

	Pa		,	Mark Scheme: Teachers' version	Syllabus		Paper
				GCE AS/A LEVEL – May/June 2012	9702		41
13	(a)	(a) (i) no interference (between signals) near boundaries (of cells)		3)	B1	[1]	
		(ii)		arge area, signal strength would have to be greater and azardous to health	d this could	B1	[1]
	(b)			hone is sending out an (identifying) signal r/cellular exchange <u>continuously</u> selects cell/base stati	on	M1	
		with strongest signal computer/cellular exchange allocates (carrier) frequency (and slot)		A1 A1	[3]		