MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9702	43

Section A

1	(a)	(i) weight = GMm/r^2 = $(6.67 \times 10^{-11} \times 6.42 \times 10^{23} \times 1.40)/(\frac{1}{2} \times 6.79 \times 10^6)^2$ = 5.20 N (ii) potential energy = $-GMm/r$ = $-(6.67 \times 10^{-11} \times 6.42 \times 10^{23} \times 1.40)/(\frac{1}{2} \times 6.79 \times 10^6)$ = $-1.77 \times 10^7 \text{ J}$	[3]
	(b)	either $\frac{1}{2}mv^2 = 1.77 \times 10^7$ C $v^2 = (1.77 \times 10^7 \times 2)/1.40$ C $v = 5.03 \times 10^3 \text{ ms}^{-1}$ A or $\frac{1}{2}mv^2 = GMm/r$ (C1 $v^2 = (2 \times 6.67 \times 10^{-11} \times 6.42 \times 10^{23})/(6.79 \times 10^6/2)$ (C1 $v = 5.02 \times 10^3 \text{ ms}^{-1}$ (A1)
	(c)	(i) $\frac{1}{2} \times 2 \times 1.66 \times 10^{-27} \times (5.03 \times 10^3)^2 = \frac{3}{2} \times 1.38 \times 10^{-23} \times T$ T = 2030 K (ii) either because there is a range of speeds some molecules have a higher speed or some escape from point above planet surface so initial potential energy is higher (M1 (A1)	[2])
2	(a)	temperature scale calibrated assuming linear change of property with temperature B ² neither property varies linearly with temperature B ²	
	(b)	(i) does not depend on the property of a substanceB1(ii) temperature at which atoms have minimum/zero energyB2	

(c) (i)	323.15 K	A1	[1]
(ii)	30.00 K	A1	[1]

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2011	9702	43	
3	(a)			tion proportional to displacement/distance from fixed p oposite directions/directed towards fixed point	oint	M1 A1	[2]
	(b)	ene		= $\frac{1}{2}m\omega^2 x_0^2$ and $\omega = 2\pi f$ = $\frac{1}{2} \times 5.8 \times 10^{-3} \times (2\pi \times 4.5)^2 \times (3.0 \times 10^{-3})^2$ = 2.1 × 10 ⁻⁵ J		C1 C1 A1	[3]
	(c)	(i)		aximum displacement ve rest position		M1 A1	[2]
		(ii)	acce	eleration = $(-)\omega^2 x_0$ and acceleration = 9.81 or g		C1	
				= $(2\pi \times 4.5)^2 \times x_0$ = 1.2×10^{-2} m		A1	[2]
			Ū				
4	(a)	e.g.	sepa block prod tunir smo prev	ing energy arating charge king d.c. lucing electrical oscillations ng circuits othing renting sparks ng circuits			
				sensible suggestions, 1 each, max 2)		B2	[2]
	(b)			(induced) on opposite plate of C₁ harge conservation, charges are –Q, +Q, –Q, +Q, –Q		B1 B1	[2]
		(ii)	Q/C	p.d. $V = V_1 + V_2 + V_3$ = $Q/C_1 + Q/C_2 + Q/C_3$ = $1/C_1 + 1/C_2 + 1/C_3$		B1 B1 A0	[2]
	(c)	(i)	ener	rgy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$		C1	
	. /	. /		$= \frac{1}{2} \times 12 \times 10^{-6} \times 9.0^{2}$ = 4.9 × 10 ⁻⁴ J		A1	[2]
							[4]
		(ii)	ener	rgy dissipated in (resistance of) wire/as a spark		B1	[1]

	Page 4				Syllabus	Paper				
				GCE AS/A LEVEL – October/November 2011	9702	43				
5	(a)			onnected correctly (to left & right) nected correctly (to top & bottom)		B1 B1	[2]			
	(b)	•	e.g. power supplied on every half-cycle greater <u>average/mean</u> power (any sensible suggestion, 1 mark)							
	(c)	(i)	redu	duction in the variation of the output voltage/current	B1	[1]				
		(ii)		er capacitance produces more smoothing		M1				
			eith or	er product <i>RC</i> larger for the same load		A1	[2]			
6	(a)	field	it of magnetic flux density ld normal to (straight) conductor carrying current of 1 A rce per unit length is 1 Nm ⁻¹				[3]			
	(b)	(i)		e on particle always normal to direction of motion I speed of particle is constant)		M1				
			mag	netic force provides the centripetal force		A1	[2]			
		(ii)		/r = Bqv mv/Bq		M1 A0	[1]			
	(c)	(i)		momentum/speed is becoming less ne radius is becoming smaller		M1 A1	[2]			
		(ii)	1.	spirals are in opposite directions so oppositely charged		M1 A1	[2]			
			2.	equal <u>initial</u> radii so equal (initial) speeds		M1 A1	[2]			

	Page 5)		Mark Scheme: Teachers' version	Syllabus	Paper	
				GC	E AS/A LEVEL – October/November 2011	9702	43	
7	(a)	(i)			ntum of energy agnetic radiation		M1 A1	[2]
		(ii)	<u>mini</u>	<u>mum</u> e	nergy to cause emission of an electron (from	surface)	B1	[1]
	(b)	(i)		/ =			M1 A1	[2]
		(ii)		or or	when $1/\lambda = 0$, $\Phi = -E_{max}$ evidence of use of <i>x</i> -axis intercept from graph chooses point close to the line and substitut E_{max} into $hc/\lambda = \Phi + E_{max}$ 0×10^{-19} J (allow ±0.2 × 10 ⁻¹⁹ J)		nd C1 A1	[2]
			2.	either	gradient of graph is $1/hc$ gradient = $4.80 \times 10^{24} \rightarrow 5.06 \times 10^{24}$ $h = 1/(\text{gradient} \times 3.0 \times 10^8)$		C1 M1	
			(Allc (Do	not all	= $6.6 \times 10^{-34} \text{ Js} \rightarrow 6.9 \times 10^{-34} \text{ Js}$ chooses point close to the line and substitut E_{max} into $hc/\lambda = \Phi + E_{\text{max}}$ values of $1/\lambda$ and E_{max} are correct within half $h = 6.6 \times 10^{-34} \text{ Js} \rightarrow 6.9 \times 10^{-34} \text{ Js}$ redit for the correct use of any appropriate me ow 'circular' calculations in part 2 that lead a stant that was substituted in part 1)	a square ethod)	(C1) (M1) (A1)	[3]
8	(a)	(i)	-	ability unit tim	of decay (of a nucleus) e		M1 A1	[2]
		(ii)	$\lambda t_{\frac{1}{2}} = \lambda = 2.$.82 × 24 × 3600) ⁶ s ⁻¹		M1 A0	[1]
	(b)	200 N =	= 9.5	2.1 × 10 × 10 ⁷			C1 C1	
		ratio	0 = = :	(2.5 × ′ 2.6 × 1	0 ²⁵)/(9.5 × 10 ⁷) 0 ¹⁷		A1	[3]

	Page 6		Syllabus	Paper							
		GCE AS/A LEVEL – October/November 201	1 9702	43							
	Section B										
9	(a) any	B1	[1]								
	(b) (i)	B1	[1]								
	(ii)		B1 M1 A1	[3]							
	(iii)	either V^+ increases or $V^+ > V^-$ green LED off, red LED on		M1 A1	[2]						
10	quartz/p p.d. acr alternat crystal when c alternat	rge to move to vibrate	B1 B1 B1 M1 A1	[6]							
11	• •	arpness: ease with which edges of structures can be s ntrast: <u>difference</u> in degree of blackening between s		B1 B1	[2]						
		$I = I_0 e^{-\mu x}$ $I/I_0 = \exp(-0.20 \times 8)$ = 0.20		C1 A1	[2]						
	(ii)	$I/I_0 = \exp(-\mu_1 \times x_1) \times \exp(-\mu_2 \times x_2)$ (could be three to $I/I_0 = \exp(-0.20 \times 4) \times \exp(-12 \times 4)$ $I/I_0 = 6.4 \times 10^{-22}$ or $I/I_0 \approx 0$	ərms)	C1 C1 A1	[3]						
	(c) (i)	sharpness unknown/no		B1	[1]						
	(ii)	contrast good/yes (ecf from (b))		B1	[1]						

Pa	ige 7	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2011	9702	43	
12 (a)	so ir e.g. lowe so le e.g. UHF so m	er frequencies can be re-used (without interference) acreased number of handsets can be used er power transmitters ess interference ⁵ used nust be line-of-sight/short handset aerial <i>sensible suggestions with explanation, max 4</i>)		(M1) (A1) (A1) (A1) (A1) (A1) B4	[4]
(b)	monitors relayed f	r at cellular exchange the signal power rom several base stations call to base station with strongest signal		B1 B1 B1 B1	[4]