MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Mark Scheme: Teachers' version Syllabus		Paper			
		GCE	AS/A LEVEL – C	ctober	November 2011	9702	23	
1	(a) scalar	⁻ has magnit	ude/size, vector l	nas mag	gnitude/size and dire	ection	B1	[1]
	(b) accele (-1 fo	eration, mon r each addit	nentum, weight ion or omission b	ut stop	at zero)		B2	[2]
	(c) (i) h	orizontally:	7.5cos40°/7.5s	in 50° =	5.7(45) / 5.75 <u>not</u> 5	.8N	A1	[1]
	(ii) ve	ertically:	7.5sin40°/7.5cc	os 50° =	4.8(2)N		A1	[1]
	(d) either or $T_1 = 5$ $T_2 = 4$ (allow	correct sha correct lab correct res $T_1 \sin 50^\circ +$ 5.7(45) (N) 4.8 (N) $r \pm 0.2$ N for	aped triangle elling of two force olving: $T_2 \cos 40^\circ$ - $T_2 \sin 40^\circ$ = 7.5 scale diagram)	es, three = T₁co	e arrows and two an s 50°	gles	M1 (B1) (B1) A1 A1	[4]
2	(a) 1.	constant	velocity / speed				B1	[1]
	2.	either co or co	onstant / uniform onstant rate of de	decreas crease	se (in velocity/speed (in velocity/speed))	B1	[1]
	(b) (i) di st	istance is ar tage 1: dista	ea under graph fe nce (18 × 0.65) =	or both : 11.7 (r	stages n)		C1	
	si tc (- {f a	tage 2: dista otal distance -1 for misrea for stage 2, a nd then s =	nce = (9 × [3.5 – = 37.(4)m ading graph) allow calculation o (18 × 2.85) + ½ ×	0.65]) = of accel 6.32 (2	⁻ 25.7 (m) eration (6.32 m s ^{−2}) 2.85) ² = 25.7 m}		A1	[2]
	(ii) e	ither F = m a = (1	a 8 – 0)/(3.5 – 0.65	or)	$E_{\rm K} = \frac{1}{2}mv^2$ $E_{\rm K} = \frac{1}{2} \times 1250 \times (2)^2$	18) ²	C1 C1	
	F	$F = 1250 \times 6.$ r initial mo F = chan F = (1250)	3 =7900 N mentum = 1250 > ge in momentum) × 18) / 2.85 = 7	<i>or F</i> < 18 / time ta 900	= ½ × 1250 × (18) ² , aken	/ 25.7 = 7900 N	A1 (C1) (C1) (A1)	[3]
	(c) (i) st	tage 1: eith or or	ner half / less dis half distance sensible disc	tance a as the ussion	is speed is half / less time is the same of reaction time	3	B1	[1]
	(ii) st	tage 2: <i>eith</i> ¼ c	<i>ner</i> same accele of the distance	ration a	nd s = v² / 2a or v	² is ¼	B1 B1	[2]

Page 3			}	Mark Scheme: Teachers' version Syllabus			Paper	
				GCE AS/A LEVEL – October/November 2011	9702	23		
3	(a)	 (a) (i) power = work done per unit time / energy transferred per unit time / rate done 						
		(ii)	You	ng modulus = stress / strain		B1	[1]	
	(b)	(i)	1.	$E = T / (A \times \text{strain}) \text{ (allow strain} = \varepsilon)$ $T = E \times A \times \text{strain} = 2.4 \times 10^{11} \times 1.3 \times 10^{-4} \times 0.001$ $= 3.12 \times 10^{4} \text{ N}$		C1 M1 A0	[2]	
			2.	T - W = ma [3.12 × 10 ⁴ - 1800 × 9.81] = 1800 <i>a</i> $a = 7.52 \text{ m s}^{-2}$		C1 C1 A1	[3]	
		(ii)	1.	$T = 1800 \times 9.81 = 1.8 \times 10^4 \mathrm{N}$		A1	[1]	
			2.	potential energy gain = mgh = 1800 × 9.81 × 15 = 2.7 × 10 ⁵ J		C1 A1	[2]	
		(iii)	P = = inpu	Fv 1800 × 9.81 × 0.55 t power = 9712 × (100/30) = 32.4 × 10 ³ W		C1 C1 A1	[3]	
4	(a) p.d. = <u>energy transformed from electrical to other forms</u> unit charge							
		e.m	n.f. = <u>(</u>	energy transformed from other forms to electrical unit charge		B1	[2]	
	(b)	(i)	sum	of e.m.f.s (in a closed circuit) = sum of potential different	ences	B1	[1]	
		(ii)	4.4 - I = (– 2.1 = <i>I</i> × (1.8 + 5.5 + 2.3)).24 A		M1 A1	[2]	
		(iii)	arro	w (labelled) <i>I</i> shown anticlockwise		A1	[1]	
		(iv)	1.	$V = I \times R = 0.24 \times 5.5 = 1.3(2) V$		A1	[1]	
			2.	$V_{A} = 4.4 - (I \times 2.3) = 3.8(5) V$		A1	[1]	
			3.	either $V_B = 2.1 + (I \times 1.8)$ or $V_B = 3.8 - 1.3$ = 2.5(3)V		C1 A1	[2]	

	Page 4			Mark Scheme: Teachers' version Syllabus			Paper	
				GCE AS/A LEVEL – October/November 2011	9702	23		
5	(a) transver to the di longitud			rse waves have vibrations that are perpendicular / normal irection of energy travel linal waves have vibrations that are parallel				
		to the direction of energy travel						
	(b)	vibr <i>eith</i>	ation <i>er</i>	s are in a single direction applies to transverse waves		M1		
		or or		normal to direction of wave energy travel normal to direction of wave propagation		A1	[2]	
	(c)	(i)	1.	amplitude = 2.8 cm		B1	[1]	
			2.	phase difference = 135° or 0.75π rad or $\frac{3}{4}\pi$ rad or 2.3 (three sf needed)	6 radians			
				numerical value unit		M1 A1	[2]	
		(ii)	amp	blitude = 3.96 cm (4.0 cm)		A1	[1]	
6	(a)	(i)	grea	ater deflection		MO		
			grea	ater electric field / force on α -particle		A1	[1]	
		(ii)	grea	ater deflection		M0		
			grea	ater electric field / force on α -particle		A1	[1]	
	(b)	(i)	eithe	er deflections in opposite directions		M1		
			or	β less deflection		(M1)		
				$_{\beta}^{\prime}$ has smaller charge		(A1)	[2]	
		(ii) α smaller deflection						
			beca	ause larger mass		A1	[2]	
		(iii)	βle	ss deflection because higher speed		B1	[1]	
	(c)	(c) either $F = ma$ and $F = Eq$ or $a = Eq / m$ ratio = either $(2 \times 1.6 \times 10^{-19}) \times (9.11 \times 10^{-31})$ $(1.6 \times 10^{-19}) \times 4 \times (1.67 \times 10^{-27})$						
			O	$r [2e \times 1 / 2000 u] / [e \times 4u]$		C1		
		ratio	o = 1	$/4000 \text{ or } 2.5 \times 10^{-4} \text{ or } 2.7 \times 10^{-4}$		A1	[3]	