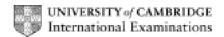
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/23


Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	r age z		Walk Scheme. Teachers Version	OZOO	i apei	
			GCE AS/A LEVEL – May/June 2010	9702	23	
1	(a)	(i) 1%	of ±2.05 is ±0.02		A1	[1]
		(ii) max	. value is 2.08 V		A1	[1]
	(b)		ly be a zero error/calibration error/systematic error akes all readings either higher or lower than true value		M1 A1	[2]
2	(a)		ant force/sum of forces zero ant moment/torque/sum of moments/torques zero		B1 B1	[2]
	(b)	in m arro	n force is represented by the side of a triangle/by an ar agnitude and direction ws joined, head to tail ald be shown on a sketch diagram)	row	M1 A1 B1	[3]
		(ii) if the	e triangle is 'closed' (then the forces are in equilibrium)		B1	[1]
	(c)	triangle of $T_1 = 5.4$ $T_2 = 4.0$		nark)	B1 B1 B1	[3]
	(d)		strings would be horizontal rertical force to support the weight		B1 B1	[2]
3	(a)	distance	e of use of area below the line = 39 m (allow ±0.5 m) im but ≤ 1.0 m, then allow 1 mark)		B1 A2	[3]
	(b)		$E_{K} = \frac{1}{2}mv^{2}$ $E_{K} = \frac{1}{2} \times 92 \times (6^{2} - 3^{2})$		C1	
			1240 J		A1	[2]
		Δ	$E_P = mgh$ $E_P = 92 \times 9.8 \times 1.3$ $E_P = 1170 \text{J}$		C1 A1	[0]
		(ii) <i>E</i> =			C1	[2]
		` '	75 × 8		A1	[2]
	(c)	(i) ener = 67	rgy = (1240 + 600) - 1170 '0 J		M1 A0	[1]
		(ii) force	e = 670/39 = 17 N		A1	[1]
	(d)		forces include air resistance ance decreases with decrease of speed		B1 B1	[2]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 2

	Page 3		,	Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2010 970		23	
4	(a)	(i)	solid	has fixed volume and fixed shape/incompressible		B1	[1]
		(ii) gas fills any space into which it is put				B1	[1]
	(b)	atoms/molecules have (elastic) collisions with the walls (of the vessel) momentum of atom/molecule changes so impulse (on wall)/force on wall random motion/many collisions (per unit time) gives rise to			B1 B1 B1		
		(constant) force/pressure					[4]
	(c)	spacing (much) greater in gases than in liquids/about ten times either—spacing depends on $1/\sqrt[3]{\rho}$				C1	
		or		ratio of spacings is about 8.8		A1	[2]
5	(a)	(i)	1 n 2 n	umber of oscillations per unit time $$ (not per second) λ		B1 A1	[1] [1]
		(ii)	n/t = or f	distance / time = $n\lambda/t$ = f hence $v = f\lambda$ oscillations per unit time so $f\lambda$ is distance per unit time ance per unit time is v so $v = f\lambda$		M1 A1 M1 A1	[2]
	(b)	(i)		period is $3 \times 2 = 6.0 \text{ ms}$ uency = $1/(6 \times 10^{-3}) = 170 \text{ Hz}$		C1 A1	[2]
		(ii)	wav	e (with approx. same amplitude and) with correct phas	e difference	B1	[1]
6	(a)	(i)	mov	ement/flow of charged particles		B1	[1]
		(ii)	work	done per unit charge (transferred)		B1	[1]
	(b)	straight line through origin resistance = V/I , with values for V and I shown = 20 Ω (using the gradient loses the last mark)		B1 M1 A0	[2]		
	(c)	(i)	0.5 <i>A</i>	A		A1	[1]
		(ii)		er resistance of each resistor is 20Ω or total current = 0 er combined resistance = 10Ω or $R = E/I = 10 \Omega$	D.8A	C1 A1	[2]
	(d)	(i)	10 V			A1	[1]
		(ii)		er = <i>EI</i> × 0.2 = 2.0 W		C1 A1	[2]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9702	2	3
7	(a)	(i)	either helium nucleus or particle containing two protons and two neutrons		B1	[1]
		(ii)	allow any value between 1 cm and 10 cm		B1	[1]
	(b)	(i)	energy = $(8.5 \times 10^{-13})/(1.6 \times 10^{-13})$ = 5.3MeV		M1 A0	[1]
		(ii)	number = $(5.3 \times 10^6)/31$ = 1.7×10^5 (allow 2 s.f. only)		C1 A1	[2]
		(iii)	number per unit length = (1.7×10^5) /(a)(ii) correct numerical value correct unit		A1 B1	[2]