MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/21 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Pag	Page 2		Mark Scheme: Teachers' versionSyllabusGCE AS/A LEVEL – May/June 20109702		Pape	r
						21	
1		a				B1 B1	[4]
2		sca sca vec	lar			B1	[3]
	(b)	(i)		radient (of graph) is the speed/velocity (<i>can be scored</i> nitial gradient is zero			[2]
			2 g	radient (of line/graph) becomes constant		B1	[1]
		(ii)	-	eed = $(2.8 \pm 0.1) \text{ m s}^{-1}$ answer > ± 0.1 but $\leq \pm 0.2$, then award 1 mark)		A2	[2]
	((iii)	cor	ved line never below given line and starts from zero . tinuous curve with increasing gradient never vertical or straight		B1	[3]
3	. ,	or		energy (stored)/work done represented by area under g energy = $average$ force × extension = $\frac{1}{2} \times 180 \times 4.0 \times 10^{-2}$ = 3.6 J		C1	[3]
	(b)	(i)	eith or or	nermomentum before release is zeroso sum of momenta(of trolleys) after release is zerforce = rate of change of momentum(M1)force on trolleys equal and opposite(A1)impulse = change in momentum(M1)impulse on each equal and opposite(A1)			[2]
		(ii)	1	$M_1 V_1 = M_2 V_2 \qquad \dots$		B1	[1]
			2	$\underline{\underline{F}} = \frac{1}{2} M_1 V_1^2 + \frac{1}{2} M_2 V_2^2 \qquad \dots$		B1	[1]
		(iii)		$E_{\rm K} = \frac{1}{2}mv^2$ and $p = mv$ combined to give $E_{\rm K} = p^2 / 2m$			[1]
				m smaller, $E_{\rm K}$ is larger because p is the same/constant so trolley B			[1]

	Pa	ge 3	Mark Scheme: Teachers' version Syllabus		Paper	
			GCE AS/A LEVEL – May/June 2010 9702		21	
4	(a)		<u>vave</u> (front) passes by/incident on an edge/slit nds/spreads (into the geometrical shadow)		M1 A1	[2]
	(b)	$d \sin \theta =$ d = 2.82			C1	[4]
	(c)		ns in same position rotate through 90°		B1 B1	[2]
	(d)		creen not parallel to grating rating not normal to (incident) light		B1	[1]
5	(a)	region/ar	ea where a charge experiences a force		B1	[1]
	(b)		nand sphere (+), right-hand sphere (-)		B1	[1]
			orrect region labelled C within 10 mm of central part of the the within 5 mm of plate	-	B1	[1]
		2 c	orrect region labelled D area of field not included for ((b)(ii)1	B1	[1]
	(c)	(i) arro	ws through P and N in correct directions		B1	[1]
		(ii) torq	ue = force × perpendicular distance (between forces) = $1.6 \times 10^{-19} \times 5.0 \times 10^4 \times 2.8 \times 10^{-10} \times \sin 30$ = 1.1×10^{-24} N m			[2]
6	(a)	60 =	VI 12 × I 5.(0) A			[2]
		(ii) eithe eithe	$P = IR or P = I^2 R or P = V^2 / R \dots$ or $12 = 5 \times R or 60 = 5^2 \times R or 60 = 12^2 / R \dots$ 2.4 Ω			[2]
	(b)	L = (2.4	$(0.4 \times 10^{-3})^2 (= 5.03 \times 10^{-7})$ × 5.03 × 10 ⁻⁷)/(1.0 × 10 ⁻⁶)			[0]
		- 1.211			A1	[3]
	(c)	<i>either</i> cu	the is halved $rectarrow rent is doubled or power \propto 1/Rdoubled rectarrow re$			[3]

© UCLES 2010

	Page 4			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2010	9702	21	
7	(a)			oms with same proton number/atomic number oms contain different numbers of neutrons/different ato			[2]
	(b)	(i)	92			A1	[1]
		(ii)	146			A1	[1]
	(c)	(i)	mas	$s = 238 \times 1.66 \times 10^{-27}$ = 3.95 × 10 ⁻²⁵ kg		C1 A1	[2]
				me = $\frac{4}{3}\pi \times (8.9 \times 10^{-15})^3$ (= 2.95 × 10 ⁻⁴²)			
			dens	sity = $(3.95 \times 10^{-25})/(2.95 \times 10^{-42})$ = 1.3×10^{17} kg m ⁻³		A1	[2]
	(d)	eithe	er nu	contains <u>most of</u> mass of atom clear diameter/volume <u>very much</u> less than that of ator n is mostly (empty) space	n		[2]