MARK SCHEME for the May/June 2013 series

9231 FURTHER MATHEMATICS

9231/21

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9231	21

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9231	21

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a "fortuitous" answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Schem GCE A LEVEL – May		Syllabus 9231		aper 21	
				0201			
Question Number	Mark Sch	eme Details				Part Mark	Total
1	State or in	nply length of <i>CP</i> or equivalent: e.g. for angle $CPA = \theta$	$CP = 4a \text{ or } \sin \theta = \\or \ \cos \theta =$		B1		
	EITHER:	2 moment. eqns for <i>R</i> and <i>F</i> , e.g. about <i>P</i> : about <i>C</i> :	$5aF = 2a mg \cos \theta; I$ $3aR \cos \theta - 3aF \sin \theta$	U	M1;A1 M1		
	Solve for A	<i>R</i> :	R = (4mg + 9F)/12 =	43 <i>mg</i> /75	M1 A1		
	Resolve h	the neutrino neutrin	$3aT = 2a mg \cos \theta$ $F = T \sin \theta;$ $R = mg - T \cos \theta;$	=8mg/25 (N			
		orizontally to find reaction at <i>A</i> : $\mu_{\min} R$ to find μ_{\min} :	$\mu_{\min} = 24/43$ A.G.		M1 A1	8	8
2		rvation of momentum, e.g.: on's law of restitution	$4mv_A + 2mv_B = 4mt$	U	M1		
	(consisten		$v_A - v_B = -eu$ $\frac{1}{2} 4mv_A^2 = \frac{1}{4} \frac{1}{2} 4mu^2$	$[v_A^2 = \frac{1}{4}u^2]$	M1 M1		
	EITHER : OR:	Consider one possible value of v_A : Consider other value of v_A : Combine first 2 eqns to find v_A : Find 2 possible values of <i>e</i> from	$v_A = -\frac{1}{2} u, v_B = 3u,$	$e = 3\frac{1}{2}$	B1 (B1)		
	Select one	K.E: value (stating reason):	$(2-e)^2 = 9/4, e^2 - 4$ $e = \frac{1}{2} \text{ or } \frac{3}{2}$ $e \le 1 \text{ (or } < 1) \text{ so } e = 1$		(B1) B1	6	
		rvation of momentum, e.g. on's law of restitution (consistent	$2mv_B' + mv_C = 2mv$	$u_B + \frac{1}{2} mu$	M1		
	signs):	$v_B = u$ and solve for v_B' :	$v_B' - v_C = -e(v_B - 2v_B' + v_C) = 5u/2$ and	1	M1		
	State why	no further collisions ($\overset{\texttt{h}}{\downarrow}$ on v_B' , v_A provided $v_B' > v_A$):	$v_B' - v_C = -\frac{1}{4} u$ so $\frac{3}{4} u > \frac{1}{2} u [v_C = u \text{ ncc}]$	2	M1 A1 B1√ ^Å	5	11

Pag	je 5	Mark Scheme		Syllabus		Paper	
		GCE A LEVEL – May/			21		
3		nservation of energy: B1 here if found by $v^2 = u^2 - 2gh$)	$\frac{1}{2}mv^2 = \frac{1}{2}mu^2 - mg$	$a(1-\cos\theta)$ M	[1 A1		
		= ma radially: ate v^2 to find T:	$T - mg \cos \theta = mv^2/a$ B1 $T = mu^2/a + mg(3 \cos \theta - 2)$ A.G. M1 A1			5	
	Find or	r use max. and min. values of <i>T</i> :	$T_{\rm max} = mu^2/a + mg$ $T_{\rm min} = mu^2/a - 5mg$		B1 B1		
	Find <i>u</i>	from $T_{\max} / T_{\min} = 3$:	$u^2/a + g = 3u^2/a - 1$ $2u^2/a = 16g, u = \sqrt{8a}$		[1 A1	4	
	Find co	to s θ from $T = \frac{1}{2}T_{\text{max}} [= \frac{1}{2} 9mg]$:	$3\cos\theta - 2 = -\frac{1}{2}\frac{u^2}{2}$ $\cos\theta = \frac{1}{3}(2 - 4 + \frac{1}{2})$	0	11 A1 A1	3	12
4	Find M Find M	II of sphere about C: II of rod about C: II of ring about C: ne to give MI of system about C:	$I_{\text{Sphere}} = \frac{2}{3} \lambda m (3a)^2 + I_{Rod} = \frac{1}{3} 4m (3a/2)^2 + I_{Ring} = 4m (\frac{1}{2}a)^2 + 4m I = (55\lambda + 28 + 2) ma$	$-4m(5a/2)^2$ M $m(1/2a)^2$ a^2	[1 A1 [1 A1 M1		
		qn of motion for system: ximate sin θ by θ and find ω^2 in	$= (30 + 55\lambda) ma^{2}$ $I d^{2}\theta/dt^{2} =$ $- (\lambda \times 7 + 4 \times 5/2 + 4)$		A1 [1 A1	6	
	SHM e	-	$\omega^{2} = (12 + 7\lambda)g / (30)$ 5(12 + 7\lambda) = 30 + 55\lambda	/	[1 A1 [1 A1	6	12
5	used): State o value: Valid r e.g.:	oth hypotheses (B0 if r not ρ r use correct tabular one-tail r nethod for reaching conclusion, t conclusion (AEF, dep *B1):	H ₀ : $\rho = 0$, H ₁ : $\rho < 0$ $r_{12,5\%} = 0.497$ Accept H ₀ if $ r < tabuNo evidence of neg. c$	ılar value	B1 *B1 M1 A1	4	4
6		y distribution of <i>X</i> : nean of <i>X</i> :	Negative exponential 5/3 or 1.67		B1 B1	2	
(i)	Find P	(X > 4):	$P(X > 4) = 1 - F(4) = e^{-2 \cdot 4} = 0.0907$	Μ	[1 A1	2	
(ii)		r use eqn. for median <i>m</i> of <i>X</i> : alue of <i>m</i> :	$F(m) [or 1 - F(m)] = e^{-0.6m} = \frac{1}{2}, m = (5/3)$		M1 [1 A1	3	7
7	Find 1 ^s	st expected frequency E_2 :	$E_2 = 80 \int_2^3 3x^{-2} \mathrm{d}x$				
	Find of	ther expected frequencies:	$= 80 \left[-3x^{-1} \right]_{2}^{3}$ = 40 A.G. $E_{3} = 20, E_{4} = 12,$		[1 A1 [1 A1	4	
		at least) null hypothesis: ate χ^2 (to 2 d.p.):	H ₀ : f(x) fits data (A $\chi^2 = 0.4 + 4.05 + 0.75$.E.F.) $+ 0.5 = 5.7$ M	B1 [1 A1		

	Page 6	Mark Schem		Syllabus	P	Paper	
		GCE A LEVEL – May/	lay/June 2013 9231			21	
		r use consistent tabular value: usion (A.E.F., $\sqrt[4]{}$ on χ^2 , dep *B1):	$\chi_{3,0,9}^2 = 6.25[1]$ $\chi^2 < 6.25$ so f(x) does	fit	*B1 B1√	5	9
8	Find G(the f(x) to find F(x) for $2 \le x \le 4$: (y) for $8 \le y \le 64$:	$F(x) = \int_{2}^{x} f(x) dx$ G(y) = P(Y < y) = P(x) $= P(X < y^{1/3}) = H$ $= (y^{2/3} - 4)/12$	$X^3 < y)$ $F(y^{1/3})$	1 A1 1 A1		
		Find G(y) for $8 \le y \le 64$: (y) for other values of y: ntiate to find g(y) for $8 \le y \le 64$:	$G(y) = P(Y < y) = P(x < y^{1/3}) = f(x < y^{1/3}) = f(x < y^{1/3}) = f(x < y^{1/3}) = f(x < y^{1/3}) = f(y < y^{1/3}) = f(y$	$\frac{\chi^3 < y}{2^{y^{1/3}}}$ f(x) dx (M1 - 4)/12 (M1 - 564)	A1) A1) B1 B1	6	
	<i>EITHEI</i> <i>OR</i> : Evaluat	<i>R</i> : Find E(<i>Y</i>) from $\int yg(y)$: Find E(<i>Y</i>) from E(X^3): e:	$(1/18) \int_{8}^{64} y^{2/3} dy = (1/30)$ $(1/6) \int_{2}^{4} x^4 dx = (1/30)$ $= (4^5 - 2^5)/30 = 992/3$ $= 496/15 \text{ or } 33.1$	$[x^5]_8^{64}$ (M1	1 A1 A1) A1	3	9
9	variance (allow b) State hy Calcula State or (or can = 5.87)	mple mean and estimate population e: biased here: $1 \cdot 19 \text{ or } 1 \cdot 091^2$) /potheses (B0 for \overline{x}): te value of t (to 3 s.f.): • use correct tabular t value: compare $x = 6 \cdot 1$ with $5 \cdot 2 + 0 \cdot 667$ conclusion (A.E.F., \checkmark on t, dep	$\bar{x} = 6.1, \ s_x^2 = (384 - t)^2 + (384 - t)^2 + (382 -$	$r 1.15^{2}$ 2) = 2.47[5] M	M1 B1 1 A1 *B1 B1√ [♣]	6	
	State hy State as	Protheses (B0 for \overline{x}), e.g.: sumption (A.E.F.): mple mean [and estimate variance] R Estimate (pooled) common varian	$s = (7 \times 1.522 + 7 \times 1)$	tal variances $(6-70^2/10)/9$ or 1.085^2] (178)/18	B1 B1		
	OR commo	Calculate value of <i>t</i> (to 3 s.f.):	$or (384-61^{2}/10+500) = 1.25 or 1.18^{2}$ $s^{2} = (1.322 + 1.178) / t = (\overline{y} - \overline{x}) / s = 1.8$	M = 0.25 (M1	1 A1 A1) A1)		
	(or can	use correct tabular <i>t</i> value: compare $\overline{y} - \overline{x} = 0.9$ with 0.867) conclusion (A.E.F., \checkmark on <i>t</i> , dep	$t_{18,0.95} = 1.73[4]$		*B1	o	14
			t > 1.73 so Q's mean is	s greater	B1√^	8	17

	Page 7 Mark Scheme			Syllabus	Pa	iper		
		GCE A LEVEL – May/		June 2013	9231 2		21	
10 (a))	E.P.E.:	after falling ka from P.E. and for k (or ka) at B using K.E. = 0:	$mg \times ka - \frac{1}{2}(3mg/2) = mga(k - 3k^2/4 + 3) = \frac{1}{4}mga(10k - 3 - 3) = 3k^2 - 10k + 3 = 0$	$3k/2 - \frac{3}{4})$ $3k^2$) A.G.	=[A1 A1 M1	3	
			roots and select root > 1: t_1 to fall <i>a</i> from <i>A</i> (under no	Roots 3 and $\frac{1}{3}$, so $k = a = \frac{1}{2}gt_1^2$, $t_1 = \sqrt{3}$		11 A1 B1	3	
		equilibrium State or fin <i>O</i> : State or us Find time	<i>e</i> or distance fallen at m pt <i>O</i> : nd SHM eqn. at <i>x</i> below (or above) se correct amplitude x_0 and ω^2 : t_2 to fall from <i>a</i> to 3 <i>a</i> below <i>A</i> , e.g.: time $t_1 + t_2$:	mg = 3mge/2a, e = 2a/3 or AO = $md^2x/dt^2 = mg - 3mg$ $d^2x/dt^2 = -3gx/2a$ $x_0 = 4a/3 \text{ and } \omega^2 = 3$ $[-] e = x_0 \cos \omega t_2$ $t_2 = \sqrt{(2a/3g)} \cos^{-1}(-\sqrt{(2a/g)} + (2\pi/3)) \sqrt{(2a/g)}$	g(x + e)/2a 3g/2a $r'/_2)$ (A.E.F.)	B1 M1 A1 B1 M1 A1 A1	8	14
(b))	Find 4 sur	nmations reqd. in this part:	$\Sigma x = 12 + p, \ \Sigma x^2 = 33$ $\Sigma y = 23, \ [\Sigma y^2 = 12]$ $\Sigma xy = 63 + 2p$		M1		
		EITHER:	Substitute $b_1 = 1$ in formula for gradient: (A.E.F., A1 for each side)	$63 + 2p - (12+p) \times 22$ = 38+p ² - (12+p) ² / or 39 - 13p = 4p ² - 2	/5	A1 A1		
		OR	Substitute in normal eqns. or equivalent: (A.E.F., A1 for each eqn.)	5k + (12 + p) = 23 (12 + p)k + (38 + p ²)		1 A1)		
		Obtain and	d solve quadratic for p (A.E.F):	$0.8p^{2} - 2.2p + 1.4 = or 4p^{2} - 11p + 7 = 0p = 1, 1.75 (or 7/4)$	0 N	11 A1 1, A1	8	

Р	age 8	Mark SchemeSyllabusGCE A LEVEL – May/June 20139231			aper 21		
(i)	Find eqn,	for correlation coefficient with $p = 1$:				
	EITHER:		$r = (65 - 13 \times 23/5) / \sqrt{(39 - 13^2/5)(12)} = 5.2 / \sqrt{(5.2 \times 19.2)} 1.04 / \sqrt{(1.04 \times 3.84)} $	or	M1 A1		
	OR		$r^2 = 1 \times (65 - 13 \times 23/5)$ or $1 \times (39 - 13^2/5)/(12)$	$5-23^2/5)$,		
	Evaluate	r	= 5.2 / 19.2 or 1.04 / 3 r = $\sqrt{39}/12 \text{ or } 0.52$	3.84	M1 A1 A1	3	
(ii)	EITHER:	Recall or find gradient b_2 of line: Find regression line of x on y :	$b_2 = 5 \cdot 2/19 \cdot 2 \text{ or } r^2 [= x - 13/5 = b_2 (y - 23/5) \\ x = (13/48)y + 65/48 \\ \text{or } 0 \cdot 271y + 1 \cdot 35$		M1 M1 A1		
	OR	Use normal eqns for $x = a_2 + b_2 y$: Solve for a_2, b_2 :	$5a_2 + 23b_2 = 13$ and $23a_2 + 125b_2 = 65$ $b_2 = 13/48$ or 0.271		(M1) (M1)		
			And $a_2 = 65/48$ or 1.3	35	(A1)	3	14