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1 The equation x3 + px + q = 0 has a repeated root. Prove that 4p3 + 27q2 = 0. [5]

2 The position vectors of points A, B, C, relative to the origin O, are a, b, c, where

a = 3i + 2j − k, b = 4i − 3j + 2k, c = 3i − j − k.

Find a × b and deduce the area of the triangle OAB. [3]

Hence find the volume of the tetrahedron OABC, given that the volume of a tetrahedron is
1
3
× area of base × perpendicular height. [2]

3 Prove by mathematical induction that, for all positive integers n,

dn

dxn (ex sin x) = 2
1
2
n
ex sin(x + 1

4
nπ). [7]

4 The linear transformation T : >4 → >4 is represented by the matrix M, where

M =


3 4 2 5

6 7 5 8

9 9 9 9

15 16 14 17

 .

Find

(i) the rank of M and a basis for the range space of T, [4]

(ii) a basis for the null space of T. [3]

5 The point P (2, 1) lies on the curve with equation

x3 − 2y3 = 3xy.

Find

(i) the value of
dy

dx
at P, [3]

(ii) the value of
d2y

dx2
at P. [4]

6 Let I
n
= ã 1

0

xn(1 − x)1
2 dx, for n ≥ 0. Show that, for n ≥ 1,

(3 + 2n)I
n
= 2nI

n−1
. [5]

Hence find the exact value of I
3
. [3]
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7 The curve C has equation y = x2 + px + 1

x − 2
, where p is a constant. Given that C has two asymptotes,

find the equation of each asymptote. [3]

Find the set of values of p for which C has two distinct turning points. [5]

Sketch C in the case p = −1. Your sketch should indicate the coordinates of any intersections with the

axes, but need not show the coordinates of any turning points. [3]

8 The vector e is an eigenvector of the matrix A, with corresponding eigenvalue λ , and is also an

eigenvector of the matrix B, with corresponding eigenvalue µ. Show that e is an eigenvector of the

matrix AB with corresponding eigenvalue λµ. [2]

State the eigenvalues of the matrix C, where

C = −1 −1 3

0 1 2

0 0 2

 ,

and find corresponding eigenvectors. [4]

Show that ( 1

6

3

) is an eigenvector of the matrix D, where

D =  1 −1 1

−6 −3 4

−9 −3 7

 ,

and state the corresponding eigenvalue. [3]

Hence state an eigenvector of the matrix CD and give the corresponding eigenvalue. [2]

9 The curve C has equation y = 1
2
(ex + e−x) for 0 ≤ x ≤ ln 5. Find

(i) the mean value of y with respect to x over the interval 0 ≤ x ≤ ln 5, [4]

(ii) the arc length of C, [4]

(iii) the surface area generated when C is rotated through 2π radians about the x-axis. [4]

10 The curve C has polar equation r = 3 + 2 cos θ, for −π < θ ≤ π. The straight line l has polar equation

r cos θ = 2. Sketch both C and l on a single diagram. [3]

Find the polar coordinates of the points of intersection of C and l. [4]

The region R is enclosed by C and l, and contains the pole. Find the area of R. [6]

[Question 11 is printed on the next page.]
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11 Answer only one of the following two alternatives.

EITHER

Let ω = cos 1
5
π + i sin 1

5
π. Show that ω5 + 1 = 0 and deduce that

ω4 − ω3 + ω2 − ω = −1. [2]

Show further that

ω − ω4 = 2 cos 1
5
π and ω3 − ω2 = 2 cos 3

5
π. [4]

Hence find the values of

cos 1
5
π + cos 3

5
π and cos 1

5
π cos 3

5
π. [4]

Find a quadratic equation having roots cos 1
5
π and cos 3

5
π and deduce the exact value of cos 1

5
π. [4]

OR

Given that

x2 d2y

dx2
+ 4x(1 + x)dy

dx
+ 2(1 + 4x + 2x2)y = 8x2

and that x2y = ß, show that

d2ß
dx2

+ 4
dß
dx

+ 4ß = 8x2. [4]

Find the general solution for y in terms of x. [8]

Describe the behaviour of y as x → ∞. [2]
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