MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9231 FURTHER MATHEMATICS

9231/23

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2011	9231	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2011	9231	23

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme: Teache		Syllabus		per	
		GCE A LEVEL – May/	June 2011	9231	2	3	
1	Use conser	rvation of momentum for 1 st collision	$kmu_B = mu$		B1		
	Use Newto	on's law of restitution:	$u_B = \frac{1}{2}u$		B1		
	Eliminate a	u_B to find k:	k = 2 A.G.		B1	3	
	Use conser	rvation of momentum for 2 nd collision	$m: kmv_B + 6mv_C =$	<i>kmu</i> _B	M1		
	Use Newto	on's law of restitution:	$v_B - v_C = -eu_B$		M1		
	Substitute	and solve for v_B :	$2v_B+6v_C=u, v_B$	$-v_C = -\frac{1}{2} eu$			
			$v_B = (1-3e)u/8$	$[v_C = (1+e)u/8]$	M1 A1		
	Use $v_B \ge 0$) if no further collisions:	$1 - 3e \ge 0, \ e \le \frac{1}{2}$	A.G.	B1	5	8
	S.R. Taki	ing $v_B = 0$ throughout:	$e = \frac{1}{3}$		(M1 A1)	(2)	
2	Find MI of	f large disc about <i>O</i> :	$\frac{1}{2}M(3a)^2 + M(5a)^2$	$)^2 = 59 Ma^2/2$]	M1 A1		
	Find MI of	f small disc about <i>O</i> :	$\frac{1}{2}(M/9)a^2 + (M/9)a^2$	$a^2 [= Ma^2/6]$	M1 A1		
	Find MI of	f particle about <i>O</i> :	$(M/3)(8a)^2$	$[= 64Ma^2/3]$	B1		
	Sum to fin	d MI of system about <i>O</i> :	A.G. <i>I</i> = (177+1	+128) $Ma^2/6 = 51$	Ma^2 A1	6	
	State or im	uply that speed is max when OP verti	cal		M1		
	Use energy	Use energy when OP vertical (or at general point):					
			$\frac{1}{2}I\omega^2 = (5+1/9+\frac{1}{3}8)$	8)Mga = 70Mga/9	9 M1 A1		
	Substitute	for a , I and find max speed $8a\omega$:					
			$\omega = \sqrt{6.10} = 2.47,$	$8a\omega = 9.9 \ [ms^{-1}]$] M1 A1	5	11
3	Moments f	for system about C, denoting ACB by	$\theta: N_B \times BC = 2W$	$\times 3a\cos\theta$			
			+W(BC-4as)	$\sin \theta$) (A.E.F.)	M1 A1		
	Substitute	for BC , θ :	$N_B \times 10a = 2W$	$X \times 9a/5 + W \times 34a$	a/5 A1		
	Simplify to	b give N_B :	$N_B = (26/25)$	W A.G.	A1	4	
	Find N_C by	v vertical resolution or moments:	$N_C = 3W - N_B$	= (49/25) W	M1 A1		
	Find F_B (o	or F_C) by moments about A:	$F_B \times 24a/5 =$	$N_B \times 32a/5$			
			$- W \times 16a/5$		M1		
			$F_B = (18/25)$	W or $0.72W$	A1		
	Find limiti	ng value for μ at <i>B</i> [or <i>C</i>] (A.E.F.):	18/26 [= 0.692	2 or $18/49 = 0.36$	7] M1 A1		
	Relate F_B ,	F_C by e.g. horizontal resolution:	$F_C = F_B [= ($	[18/25) W]	B1		
	Deduce lea	ast possible value of μ for system:	$\mu_{min} = 9/13 \ o$	r 0.692	B1	8	12

	Page 5				Syllabus			
			GCE A LEVEL – May/J	une 2011	9231	2	3	
4		Use conser	rvation of energy at general point:	$\frac{1}{2}mv^2 = \frac{1}{2}mu^2 - mg$	$ga\left(1-\cos\theta\right)$	B1		
		Equate rad	ial forces to find tension <i>T</i> :	$T = mg\cos\theta + mv$	² /a	B1		
		Eliminate	v^2 , replace u^2 by $3ag$ and simplify:	$T = mg\left(1 + 3\cos\theta\right)$	A.G.	M1 A1	4	
		Use energy	y to find speed v when PQ horizontal:	$\frac{1}{2}mv^2 = \frac{1}{2}mu^2 - mg^2$	$ga, v^2 = ga$	M1 A1		
		Use energy	y to find speed w when P above Q :	$\frac{1}{2}mw^2 = \frac{1}{2}mv^2 - m_1^2$	g(a-x)	M1 A1		
		(note that w	v need not be found)	$[mw^2 = mg(2x-a)]$				
		EITHER:						
		Consider to	ension to find reqd. condition:	$T = mw^2/(a-x) - mg$	$\geq (or >) 0$	M1 A1		
		Combine t	o find least value of <i>x</i> :	mg(3x-2a)/(a-x)	≥ 0			
				$x \ge 2a/3, x_{min} = 2a/3$	3	M1 A1		
		OR:						
		Find <i>x</i> for	which T becomes zero:	$mw^2/(a-x) = mg, \ x =$	= 2 <i>a</i> /3	(M1 A1)		
		Show this	is least possible value of <i>x</i> , e.g.:	T = mg(3x-2a)/(a-x)	≥ 0 if $x \geq 2a/3$	(M1 A1)	8	12
5	(i)	State or fir	nd $E(X)$:	E(X) = 1/0.01 or 1	00	B1	1	
	(ii)	Integrate f	(x) to find median <i>m</i> :	$\int_0^m f(x) \mathrm{d}x = 1 - \mathrm{e}^{-0}$	$0.01m = \frac{1}{2}$	M1 A1		
		Solve for <i>n</i>	n:	$m = 100 \ln 2 \ or \ 69$	-3	A1	3	
	(iii)	Integrate f	(x) to find probability:	$\int_{m}^{100} f(x) \mathrm{d}x = \frac{1}{2} - \mathrm{e}$	$^{-1} = 0.132$	M1 A1	2	6
6		Find poole	d estimate:	$(15.05 - 5.5^2/5 + 36.4)$	$(-8^2/n)/(3+n)$	M1 A1		
		Equate to 3	3 and rearrange:	45.4 - 64/n = 9 + 3	n	M1 A1		
				$3n^2 - 36 \cdot 4n + 64 =$	- 0	A1		
		Solve for <i>n</i>	1:	$n = (36.4 \pm 23.6) /$	6 = 10	M1 A1	7	7
7	(i)	Find proba	bility for needing 5 throws:	$p(1-p)^4$ with $p = 1/6$;= 0.0804 M	[1 A1; A1	3	
	(ii)	Find proba	bility for needing < 8 throws:	$1 - (1 - p)^7 = 0.722$	l	M1 A1	2	
	(iii)	Relate pro	b. to 0.99 (allow > but not =):	$1 - (1-p)^{n-1} \ge 0.99$	9	B1		
		Find least	integer n:	$(n-1)\log 5/6 \le \log 6$	0.01	M1		
		(Allow M1	A1 even if equality used)	$n-1 \ge 25.3, n_{\min} =$	27	A1	3	8

	Page 6	Mark Scheme: Teachers'	version	Syllabus	Pa	per	
		GCE A LEVEL – May/Ju	ne 2011	9231	2	3	
8	Consider of	lifferences e.g.:	5.1 2.1 2.2 0.6 5	5.1 3.1 3.9 3.7	M1		
	Calculate	sample mean:	$d = 25 \cdot 8 / 8 = 3 \cdot$	225	M1		
	Estimate p	oopulation variance:	$s^2 = (100.14 - 25)$	$\cdot 8^2/8) / 7$			
	(allow bias	sed here: 2.117 or 1.455 ²)	[= 2.419 or 1.55]	5^{2}]	M1		
	Find confi	dence interval (allow z in place of t) e.g	$: 3.225 \pm t \sqrt{2.419}$	/8)	M1		
	(inconsiste	ent use of 7 or 8 loses M1)					
	Use of cor	rrect tabular value:	$t_{7, 0.975} = 2.36[5]$		A1		
	Evaluate C	C.I. correct to 3 s.f. (in kg):	3.225 ± 1.301 or	[1.92, 4.53]	A1	6	
	State hypo	otheses:	$H_0: \mu_b - \mu_a = 2.5, 1$	$\mathrm{H}_1: \mu_b - \mu_a > 2.5$	B1		
	Calculate	value of t (to 2 dp):	$t = (\bar{d} - 2.5)/(s/\sqrt{3})$	(8) = 1.32 N	/11 *A1		
	Compare	with correct tabular t value:	$t_{7, 0.95} = 1.89[5]$		*B1		
	Correct co	nclusion (AEF, dep *A1, *B1):	Reduction not mor	te than 2.5	B1	5	11
							<u> </u>

	Page 7		Mark Scheme: Tea		Syllabus		per	
l			GCE A LEVEL – M	ay/June 2011	9231	2	3	
9	(i)	Find mean	values:	$\overline{x} = 50.1[3], \overline{y} = 51.5$	[3]	B1	1	
	(ii)	Calculate gradient b' in $x - \overline{x} = b' (y - \overline{y})$:		$b' = (40236 - 752 \times 773)$	/15) / (45351 – 77	73 ² /15)		
						M1		
				= 1482.9 / 5515.7 = 0.20	68[9]	A1		
		Use regres	sion line to estimate x at $y = 56$:	x = 50.13 + 0.2689 (56 - 5)	51.53)	M1		
				$[x = 36 \cdot 28 + 0 \cdot 2689y] = x$	51[·3]	A1	4	
		OR Calcul	late gradient <i>b</i> in $y - \overline{y} = b(x - \overline{x})$	<i>x</i>):				
		b = (4023)	36 - 752 × 773/15) / (38814 - 752	2 ² /15)		(M1)		
				= 1482.9 / 1113.7 = 1.33	[15]	(A1)		
		Use regres	sion line to estimate x at $y = 56$:	x = 50.13 + (56 - 51.53)/	1.332	(M1)		
				[y = -15.22 + 1.332x] =	53[.49]	(A1)		
	(iii)	Find correl	lation coefficient r:					
		r = (4023)	$6 - 752 \times 773/15) / \sqrt{(38814 - 7)^2}$	$(45351 - 773^2/15)$	}	M1		
				$= 1482.9 / \sqrt{(1113.7 \times 55)}$	15.7)			
				$= 1483 / (33.37 \times 74.27)$				
				or $98.86 / \sqrt{74.25 \times 367}$	7)			
				$= 98.86 / (8.617 \times 19.18)$)			
				= 0.598		*A1	2	
	(iv)	State both	hypotheses:	H ₀ : $\rho = 0$, H ₁ : $\rho \neq 0$		B1		
		Use correc	t tabular 2-tail <i>r</i> value:	$r_{15,5\%} = 0.514 \text{ (to 2 dp)}$		*B1		
		Valid meth	nod for reaching conclusion:	Reject H_0 if $ r > tabular v$	value	M1		
		Correct cor	nclusion (AEF, dep *A1, *B1):	There is a non-zero coeffi	cient	A1	4	1

F	Page 8 Mark Scheme: Teac				per	
		GCE A LEVEL – Ma	y/June 2011 9231	2	23	
10 (a)	Resolve ve	ertically at equilibrium:	$\lambda d/a = mg [\lambda/a = mg/d]$	B1		
	Use Newto	on's Law at general point:	$m d^2 x/dt^2 = mg - \lambda (d+x)/a$			
			$[or - mg + \lambda(d-x)/a]$	M1 A1		
	Simplify:		$d^2x/dt^2 = -(\lambda/ma) x \text{ or } -(g/d) x$	A1		
	S.R.: Stati	ng this without derivation (max 3/2	5):	(B1)		
	Find perio	d <i>T</i> using SHM with $\omega = \sqrt{(g/d)}$:	$T \ [= 2\pi \sqrt{(ma/\lambda)}] = 2\pi \sqrt{(d/g)} \text{A.G.}$	B1	5	
	Use SHM	formula for x with amplitude $2d$:	$x = 2d \cos(\omega t) [or \sin]$	M1		
	Find time	t_1 to string becoming slack:	$t_1 = (1/\omega) \cos^{-1}(-1/2)$			
			or $T/4 + (1/\omega) \sin^{-1}(1/2)$	M1 A1		
	Evaluate:		A.G. $t_1 = (1/\omega) 2\pi/3 = (2\pi/3)\sqrt{d/3}$	g) A1		
	Find speed	<i>v</i> when string becomes slack:	$v = \omega \sqrt{(4d^2 - d^2)} = \omega d\sqrt{3} \text{ or } \sqrt{(3dg)}$	M1 A1		
	Find furth	er time t_2 to instantaneous rest:	$t_2 = v/g$	B1		
	Substitute	and simplify:	A.G. $t_2 = \sqrt{(3dg)} / g = \sqrt{3}\sqrt{(d/g)}$	M1 A1	9	14
(b)	Find mean	and variance of sample:	262/200 = 1.31 and			
			$(586 - 262^2/200) / 200 = 1.21[39]$	M1 A1		
	Valid com	ment (AEF, needs values approx c	correct):			
	Values clo	ose, so distn. appropriate		B1	3	
(i)	State and e	evaluate expression for p	A.G. : $p = 200 (1.31^2/2)e^{-1.31} = 46.3$	04 B1		
	Find q (ca	an use $\Sigma E_i = 200$):	$q = 200 (1.31^3/6) e^{-1.31} = 20.2[19]$	B1	2	
(ii)	State (at le	east) null hypothesis:	H ₀ : Poisson fits data (A.E.F.)	B1		
	Combine 1	ast 3 cells since exp. value < 5 :	<i>O</i> : 5			
			<i>E</i> : 8·82	*M1 A1		
	Calculate	χ^2 (to 2 dp; A1 dep *M1):	$\chi^2 = 5.54$	M1 A1		
	Compare o	consistent tabular value (to 2 dp):	$\chi_{3,0.9}^2 = 6.251$	M1 A1		
	(A1	dep *M1)	$[\chi_{4,0.9}^2 = 7.779, \chi_{5,0.9}^2 = 9.236]$			
	Valid meth	hod for reaching conclusion:	Accept H ₀ if χ^2 < tabular value	M1		
	Conclusion	n (A.E.F., needs correct values):	5.54 < 6.25 so Poisson does fit	A1	9	14