

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

9709/31 October/November 2016

Paper 3 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

CAMBRIDGE International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	31

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓[↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	31

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4			
	Cambridge International A Level – October/November 2016 9709	31	
Solve	for 3^x and obtain $3^x = \frac{18}{7}$	B1	
		M1 A1	[3]
State	correct unsimplified first two terms of the expansion of $(1+2x)^{-\frac{3}{2}}$, e.g. $1+(-\frac{3}{2})(2x)$	B 1	
State	correct unsimplified term in x^2 , e.g. $\left(-\frac{3}{2}\right)\left(-\frac{3}{2}-1\right)\left(2x\right)^2/2!$	B1	
Obtai	n sufficient terms of the product of $(2 - x)$ and the expansion up to the term in x^2	M1	
Obtai	n final answer $2 - 7x + 18x^2$ Do not ISW	A1	[4]
EITH		B1 M1	
	*		
	Solve a three-term quadratic for $\sin \theta$	M1	
	Obtain final answer $\theta = -41.8^{\circ}$ only	A1	
	[Ignore answers outside the given interval.]		
OR 1	Square both sides of the equation and use $1 + \tan^2 \theta = \sec^2 \theta$	B1	
	Correct method to obtain a horizontal equation in $\sin \theta$	M1	
	Reduce the equation to a correct quadratic in any form, e.g. $9\sin^2 \theta - 6\sin \theta - 8 = 0$	A1	
	•		
	Obtain final answer $\theta = -41.8^{\circ}$ only	AI	
<i>OR</i> 2		M1	
		A1	[5]
	Solve Use co Obtain State Obtain Obtain <i>EITH</i>	Cambridge International A Level – October/November 20169709Solve for 3^x and obtain $3^x = \frac{18}{7}$ Use correct method for solving an equation of the form $3^x = a$, where $a > 0$ Obtain answer $x = 0.860$ 3 d.p. onlyState correct unsimplified first two terms of the expansion of $(1 + 2x)^{-\frac{3}{2}}$, e.g. $1 + (-\frac{3}{2})(2x)$ State correct unsimplified term in x^2 , e.g. $(-\frac{3}{2})(-\frac{3}{2}-1)(2x)^2/2!$ Obtain sufficient terms of the product of $(2 - x)$ and the expansion up to the term in x^2 Obtain final answer $2 - 7x + 18x^2$ Do not ISWEITHER: Correctly restate the equation in terms of $\sin \theta$ and $\cos \theta$ Correct method to obtain a horizontal equation $\sin in \theta$ Reduce the equation to a correct quadratic in any form, e.g. $3\sin^2 \theta - \sin \theta - 2 = 0$ Solve a three-term quadratic for $\sin \theta$ Obtain final answer $\theta = -41.8^\circ$ only [Ignore answers outside the given interval.]OR 1:Square both sides of the equation and use $1 + \tan^2 \theta = \sec^2 \theta$ Correct method to obtain a horizontal equation in $\sin \theta$ Reduce the equation to a correct quadratic in any form, e.g. $9\sin^2 \theta - 6\sin \theta - 8 = 0$ Solve a three-term quadratic for $\sin \theta$ Obtain final answer $\theta = -41.8^\circ$ only	Cambridge International A Level – October/November 2016970931Solve for 3^x and obtain $3^x = \frac{18}{7}$ B1Use correct method for solving an equation of the form $3^x = a$, where $a > 0$ M1Obtain answer $x = 0.860$ 3 d.p. onlyA1State correct unsimplified first two terms of the expansion of $(1 + 2x)^{-\frac{1}{2}}$, e.g. $1 + (-\frac{3}{2})(2x)$ B1State correct unsimplified term in x^2 , e.g. $(-\frac{3}{2})(-\frac{3}{2}-1)(2x)^2/2!$ B1Obtain sufficient terms of the product of $(2 - x)$ and the expansion up to the term in x^2 M1Obtain final answer $2 - 7x + 18x^2$ Do not ISWA1EITHER:Correct method to obtain a horizontal equation in $\sin \theta$ Reduce the equation to a correct quadratic in any form, e.g. $3\sin^2 \theta - \sin \theta - 2 = 0$ Solve a three-term quadratic for $\sin \theta$ Obtain final answer $\theta = -41.8^{\circ}$ only [Ignore answers outside the given interval.]B1OR 1:Square both sides of the equation and use $1 + \tan^2 \theta = \sec^2 \theta$ Solve a three-term quadratic for $\sin \theta$ Obtain final answer $\theta = -41.8^{\circ}$ only (B1B1Otain final answer $\theta = -41.8^{\circ}$ only (B1M1Otain final answer $\theta = -41.8^{\circ}$ onlyA1Obtain final answer $\theta = -41.8^{\circ}$ only Obtain final answer $\theta = -41.8^{\circ}$ onlyA1OR 2:Multiply through by (sec $\theta + \tan \theta$) Use $sec^2\theta - \tan^2\theta = 1$ Obtain $1 = 3 + 3\sin \theta$ Solve for $sin \theta$ M1B1B1B1B1B1B1B1B1B1B2Obtain final answer $\theta = -41.8^{\circ}$ onlyB1B1B2B1B3B3B4

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	31

		1				, , , ,
4		EITHER:	EITHER:	State $2xy + x^2 \frac{dy}{dx}$, or equivalent, as derivative of $x^2 y$	B1	
				State $6y^2 + 12xy\frac{dy}{dx}$, or equivalent, as derivative of $6xy^2$	B1	
			OR:	Differentiating LHS using correct product rule, state term $xy(1-6\frac{dy}{dr})$, or		
				equivalent	B1	
				State term $(y + x\frac{dy}{dx})(x - 6y)$, or equivalent	B 1	
				Equate attempted derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero	M1*	
				Obtain a horizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only)	A1	
				Explicitly reject $y = 0$ as a possibility $py^2 - qxy = 0$	A1	
				Obtain an equation in x or y	DM1	
				Obtain answer $(-3a, -a)$	A1	
		OR:	Rearrange	to $y = \frac{9a^3}{x(x-6y)}$ and use correct quotient rule to obtain $-\frac{9a^3}{x^2(x-6y)^2} \times \dots$	B1	
			State term	(x-6y)+x(1-6y'), or equivalent	B1	
			Justify div	vision by $x(x - 6y)$	B1	
			Set $\frac{dy}{dx}$ equ	ual to zero	M1*	
			Obtain a h	orizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only)	A1	
				equation in x or y	DM1	[7]
			Obtain and	swer $(-3a, -a)$	A1	[7]
5	(i)	EITHER:	Use tan 2A	A formula to express LHS in terms of $\tan \theta$	M1	
			-	s a single fraction in any correct form	A1	
			-	goras or cos 2A formula	M1	
			Obtain the	e given result correctly	A1	
		OR:	Express L	HS in terms of sin 2θ , cos 2θ , sin θ and cos θ	M1	
				s a single fraction in any correct form	A1	
				goras or $\cos 2A$ formula or $\sin(A - B)$ formula	M1	E41
			Obtain the	given result correctly	A1	[4]
	(ii)	Integrate a	nd obtain a	term of the form $a \ln(\cos 2\theta)$ or $b \ln(\cos \theta)$ (or secant equivalents)	M1*	
		Obtain int	egral $-\frac{1}{2}\ln(c)$	$\cos 2\theta$ + ln($\cos \theta$), or equivalent	A1	
			-	ectly (expect to see use of <u>both</u> limits)	DM1	
		Obtain the	given answ	ver following full and correct working	A1	[4]

	Page 6		Mark Scheme	Syllabus	Paper		
			Cambridge International A Level – October/November 2016	9709	31		
6	(i)		e recognizable sketch of a relevant graph the other relevant graph and justify the given statement		B1 B1	[2]	
	(ii)	Use calculations to consider the value of a relevant expression at $x = 1.4$ and $x = 1.6$, or the values of relevant expressions at $x = 1.4$ and $x = 1.6$ Complete the argument correctly with correct calculated values					
((iii)	Ream	$x = 2\sin^{-1}\left(\frac{3}{x+3}\right)$ range this in the form $\operatorname{cosec} \frac{1}{2}x = \frac{1}{3}x+1$ rking in reverse, need $\sin \frac{x}{2} = \left(\frac{3}{x+3}\right)$ for first B1		B1 B1	[2]	
((iv)	Obtai Show	he iterative formula correctly at least once in final answer 1.471 v sufficient iterations to 5 d.p. to justify 1.471 to 3 d.p., or show there is a sig ge in the interval (1.4705, 1.4715)	n	M1 A1 A1	[3]	
7	(i)	Obtai Equa	he correct product rule in correct derivative in any form, e.g. $(2-2x)e^{\frac{1}{2}x} + \frac{1}{2}(2x-x^2)e^{\frac{1}{2}x}$ te derivative to zero and solve for x in $x = \sqrt{5} - 1$ only		M1 A1 M1 A1	[4]	
	(ii)	Obtai Comj Use l	rate by parts and reach $a(2x - x^2)e^{\frac{1}{2}x} + b\int (2 - 2x)e^{\frac{1}{2}x} dx$ in $2e^{\frac{1}{2}x}(2x - x^2) - 2\int (2 - 2x)e^{\frac{1}{2}x} dx$, or equivalent plete the integration correctly, obtaining $(12x - 2x^2 - 24)e^{\frac{1}{2}x}$, or equivalent imits $x = 0$, $x = 2$ correctly having integrated by parts twice in answer 24 – 8e, or exact simplified equivalent		M1* A1 A1 DM1 A1	[5]	

	Pa	ige 7			Mark Scheme	Syllabus	Paper]
			Car	nbridge	International A Level – October/November 2016	9709	31	
8	(i)	Use o	correct r	nethod to	ct normal vector to either plane, e.g. $3\mathbf{i} + \mathbf{j} - \mathbf{k}$ or $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ o calculate their scalar product of planes are perpendicular		B1 M1 A1	[3]
	(ii)	EITH	C	Obtain suc	a complete strategy for finding a point on <i>l</i> the line of intersection a point, e.g. $(0, 7, 5)$, $(1, 0, 1)$, $(5/4, -7/4, 0)$ State two equations for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ for <i>l</i> .		M1 A1	
					e.g. $3a + b - c = 0$ and $a - b + 2c = 0$ Solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 1 : -7 : -4$, or equivalent State a correct answer, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$,	B1 M1 A1 A1√ [♣]	
			0	OR1:	Obtain a second point on <i>l</i> , e.g. $(1, 0, 1)$ Subtract vectors and obtain a direction vector for <i>l</i> Obtain $-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{k} + \lambda(-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k})$		B1 M1 A1 A1√ [≜]	
			C	DR2:	Attempt to find the vector product of the two normal vector Obtain two correct components of the product Obtain $\mathbf{i} - 7\mathbf{j} - 4\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	ors	M1 A1 A1 A1	
		OR1:	C E C F	Dotain a c Express th Obtain a c Form a ve	ne variable in terms of a second variable correct simplified expression, e.g. $y = 7 - 7x$ ne third variable in terms of the second correct simplified expression, e.g. $z = 5 - 4x$ ctor equation for the line correct equation, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$		M1 A1 M1 A1 M1 A1 √	
		OR2:	C E C F	Dbtain a c Express th Dbtain a c Form a ve	the variable in terms of a second variable correct simplified expression, e.g. $z = 5 - 4x$ the same variable in terms of the third correct simplified expression e.g. $z = (7 + 4y) / 7$ ctor equation for the line correct equation, e.g. $\mathbf{r} = \frac{5}{4}\mathbf{i} - \frac{7}{4}\mathbf{j} + \lambda(-\frac{1}{4}\mathbf{i} + \frac{7}{4}\mathbf{j} + \mathbf{k})$		M1 A1 M1 A1 M1 A1√ [∧]	[6]

	Page 8		Mark Scheme	Syllabus	Paper	
			Cambridge International A Level – October/November 2016	9709	31	
9	(a)	EITHER	1		M1	
			Use $i^2 = -1$		M1	
			Obtain one of the answers $w = \frac{1}{2i+1}$ and $w = -\frac{5}{2i+1}$		A1	
			Multiply numerator and denominator of an answer by $-2i + 1$, or equiva	alent	M1	
			Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$		A1	
		OR1:	Multiply the equation by $1 - 2i$		M1	
			Use $i^2 = -1$		M1	
			Obtain $5w^{2} + 4w(1-2i) - (1-2i)^{2} = 0$, or equivalent		A1	
			Use quadratic formula or factorise to solve for w		M1	
			Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$		A1	
		OR2:	Substitute $w = x + iy$ and form equations for real and imaginary parts		M1	
			Use $i^2 = -1$		M1	
			Obtain $(x^2 - y^2) - 4xy + 4x - 1 = 0$ and $2(x^2 - y^2) + 2xy + 4y + 2 = 0$ o.e.		A1	
			Form equation in x only or y only and solve		M1	
			Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$		A1	[5]
	(b)		circle with centre 1 + i		B1	
			circle with radius 2		B1	
		Show ha	If-line arg $z = \frac{1}{4}\pi$		B1	
		Show ha	If-line arg $z = -\frac{1}{4}\pi$		B1	
		Shade th	e correct region		B1	[5]

	Pag	ge 9	Mark Scheme	Syllabus	Paper	
		C	ambridge International A Level – October/November 2016	9709	31	
10	(i)	Integrate a	ariables correctly and integrate at least one side and obtain term <i>kt</i> , or equivalent a relevant method to obtain <i>A</i> and <i>B</i> such that $\frac{1}{x(4-x)} \equiv \frac{A}{x} + \frac{B}{4-x}$, or	equivalent	M1 A1 M1*	
		Obtain A	$=B=\frac{1}{4}$, or equivalent		A1	
		Integrate a	and obtain terms $\frac{1}{4} \ln x - \frac{1}{4} \ln(4-x)$, or equivalent		A1 √	
		EITHER:	Use a pair of limits in an expression containing <i>p</i> ln <i>x</i> , $q\ln(4 - x)$ and <i>rt</i> and evaluate a constant Obtain correct answer in any form, e.g. $\ln x - \ln(4 - x) = 4kt - \ln 9$,		DM1	
			or $\ln\left(\frac{x}{4-x}\right) = 4kt - 8k$		A1	
			Use a second pair of limits and determine <i>k</i> Obtain the given exact answer correctly		DM1 A1	
		OR:	Use both pairs of limits in a definite integral Obtain the given exact answer correctly Substitute k and either pair of limits in an expression containing		M1* A1	
			plnx, $q\ln(4 - x)$ and rt and evaluate a constant Obtain $\ln \frac{x}{4 - x} = t \ln 3 - \ln 9$ or equivalent		DM1 A1	[9]
((ii)	Substitute Obtain ans	x = 3.6 and solve for $tswer t = 4$		M1 A1	[2]