## MARK SCHEME for the March 2016 series

## 9709 MATHEMATICS

9709/62

Paper 6 (Probability and Statistics), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE<sup>®</sup> and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.



| Page 2 | Mark Scheme                                     | Syllabus | Paper |
|--------|-------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – March 2016 | 9709     | 62    |

## Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
  independent unless the scheme specifically says otherwise; and similarly when there are
  several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a
  particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
  When two or more steps are run together by the candidate, the earlier marks are implied and
  full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                                     | Syllabus | Paper |
|--------|-------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – March 2016 | 9709     | 62    |

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable) AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid) BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear) CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed) CWO Correct Working Only – often written by a 'fortuitous' answer ISW Ignore Subsequent Working MR Misread PA Premature Approximation (resulting in basically correct work that is insufficiently accurate) SOS See Other Solution (the candidate makes a better attempt at the same question) SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a

## **Penalties**

particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4Mark SchemeSyllabusPaperCambridge International AS/A Level – March 2016970962

| 1 | (i)   | $\Sigma x = 862$                                 |                  |                   |                      | B1         | 1 | Must be stated or replaced in (ii)                                          |
|---|-------|--------------------------------------------------|------------------|-------------------|----------------------|------------|---|-----------------------------------------------------------------------------|
|   | (I)   | $\Delta \lambda = 002$                           |                  |                   |                      |            | 1 | Can see (i) and (ii) in any order                                           |
|   | (ii)  | 362/10 + a = a = 50                              | = 86.2           |                   |                      | M1<br>A1   | 2 | 86.2 ± 36.2 seen oe<br>Correct answer, nfww                                 |
| 2 |       | No of W                                          | 0                | 1                 | 2                    | <b>B</b> 1 |   | 0, 1, 2, seen in table with attempt at prob.                                |
|   |       | Prob                                             | 42/90            | 42/90             | 6/90                 |            |   |                                                                             |
|   |       | P(0) = 8/10<br>P(1W) = P(1)                      |                  |                   | × 8/9 × 7/8          | M1         |   | 3-factor prob seen with different denoms.                                   |
|   |       | × 3                                              |                  | )**5 2/10         |                      | M1         |   | Mult by 3                                                                   |
|   |       | $= 42$ $P(2W) = P(1)$ $\times 3$ $= 6/9$         | W, W, NW)        | $\times 3 = 2/10$ | × 1/9 × 8/8          | A1         | 4 | All correct                                                                 |
| 3 | (i)   | P( <i>R</i> ) [ (1, 4)                           | ,(2,5), (3,6),   | (4,7),(5,8)]      | × 2/64               | M1         |   | List of at least 4 different options or                                     |
|   |       | = 10/64                                          |                  |                   |                      | A1         | 2 | possibility space diagram<br>Correct answer                                 |
|   | (ii)  | P(S) = [(3,8)]<br>(5,7)(5,6)(6,<br>(5,5)(6,6)(7, | ,8)(6,7)(7,8)]   |                   | (5,8)                | M1         |   | List of at least 14 different options or ticks<br>oe from possibility space |
|   |       | = 28/64                                          | , / )(0,0)       |                   |                      | A1         | 2 | Correct answer                                                              |
|   | (iii) | $P(R \cap S) = 4/64 \neq 10/64$                  |                  |                   |                      | B1<br>M1   |   | Comparing their $P(R \cap S)$ with (i) ×(ii) with values                    |
|   |       | Events are n                                     | ot independe     | ent               |                      | A1         | 3 | Correct answer                                                              |
| 4 | (i)   | 32                                               |                  |                   |                      | B1         | 1 |                                                                             |
|   | (ii)  | freqs 0<br>fd 0<br>cf                            | 18 32<br>1.2 1.6 | 9 4<br>0.6 0.2    |                      | M1         |   | attempt at fd or scaled freq (at least 3 f/cw attempt)                      |
|   |       |                                                  |                  |                   |                      | A1         |   | correct heights seen on diagram                                             |
|   |       |                                                  |                  |                   |                      | B1         |   | Correct bar ends                                                            |
|   |       | 0 10 2                                           | 0 30 40          |                   | 70 80<br>Time (mins) | B1         | 4 | Labels fd and time (mins) and linear axes or squiggle                       |

|   | Page  | 5               | Mark Scheme                                                                                                                                                                 | _              |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aper          |
|---|-------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|   |       |                 | Cambridge International AS/A L                                                                                                                                              | ch 2016 9709 6 | 62 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
|   | (iii) |                 | $7.5 \times 18 + 35 \times 32 + 52.5 \times 9 + 70 \times 4)/63$<br>2187.5/63 = 34.7                                                                                        | M1<br>A1       | 2  | $\Sigma fx/63$ where x is midpoint attemption of the constant of t | pt not        |
| 5 | (i)   | `               | Abroad given camping)                                                                                                                                                       | M1             |    | Attempt at $P(A \cap C)$ seen alone any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ywhere        |
|   |       | = -             | $\frac{P(A \cap C)}{P(A \cap C) + P(H \cap C)}$ $0.35 \times 0.15$                                                                                                          | A1<br>M1       |    | Correct answer seen as num or de fraction<br>Attempt at $P(C)$ seen anywhere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | enom of a     |
|   |       | =               |                                                                                                                                                                             | A1             |    | Correct unsimplified answer seen<br>or denom of a fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | as num        |
|   |       |                 | 0.168                                                                                                                                                                       | A1             | 5  | Correct answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
|   | (ii)  | (0.             | $(65)^n < 0.002$                                                                                                                                                            | M1             |    | Eqn with 0.65 or 0.35, power <i>n</i> , 0 0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.002 or      |
|   |       |                 | lg (0.002)/lg(0.65)<br>= 15                                                                                                                                                 | M1<br>A1       | 3  | Attempt to solve their eqn by logs<br>and error need a power<br>Correct answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s or trial    |
| 6 | (i)   | <sup>15</sup> P |                                                                                                                                                                             | M1<br>A1       | 2  | oe, can be implied Not ${}^{15}C_5$<br>Correct answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|   | (ii)  |                 | $\frac{10 \times 4 \times 9 \times 3}{4400}$                                                                                                                                | M1<br>A1       | 2  | Mult 5 numbers<br>Correct answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
|   | (iii) | 3<br>4<br>5     | 5) $F(10)$<br>2 = ${}^{5}C_{3} \times {}^{10}C_{2} = 450$ ways<br>1 = ${}^{5}C_{4} \times {}^{10}C_{1} = 50$<br>0 = ${}^{5}C_{5} \times {}^{10}C_{0} = 1$<br>tal = 501 ways | M1<br>M1<br>A1 | 3  | Mult 2 combs, ${}^{5}C_{x} \times {}^{10}C_{y}$<br>Summing 2 or 3 two-factor option<br>x + y = 5<br>Correct answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns,           |
|   | (iv)  | Ma              | buple) M(4) F(9)<br>anWife + 3 $0 = {}^{4}C_{3} \times {}^{9}C_{0} = 4$<br>anWife + 2 $1 = {}^{4}C_{2} \times {}^{9}C_{1} = 54$                                             | M1<br>M1       |    | Mult 2 combs ${}^{4}C_{x}$ and ${}^{9}C_{y}$<br>Summing both options $x + y = 3$ , §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gender        |
|   |       |                 | Total = 58                                                                                                                                                                  | A1             | 3  | correct<br>Correct answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| 7 | (i)   |                 | -1.645                                                                                                                                                                      | <b>B</b> 1     |    | ± 1.64 to 1.65 seen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|   |       | -1              | $.645 = \frac{0.9 - m}{0.35}$                                                                                                                                               | M1             |    | Standardising with a <i>z</i> -value accept Correct answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pt $(0.35)^2$ |
|   |       |                 | <i>m</i> = 1.48                                                                                                                                                             | A1             | 3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
|   | (ii)  | P(<             | $(2) = P\left(z < \frac{2 - 1.476}{0.35}\right)$                                                                                                                            | M1             |    | Standardising no sq , FT <i>their m</i> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | no cc         |
|   |       | = I             | P(z < 1.50)<br>0.933                                                                                                                                                        | M1<br>A1       |    | Correct area i.e. F<br>Accept correct to 2sf here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|   |       | Pro             | $bb = (0.9332)^4$<br>= 0.758                                                                                                                                                | M1<br>A1       | 5  | Power of 4, from attempt at $P(z)$<br>Correct answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |

| Page                                                                 | 6 Mark Sch                 | 5        | Syllabus | Paper                           |              |      |
|----------------------------------------------------------------------|----------------------------|----------|----------|---------------------------------|--------------|------|
|                                                                      | Cambridge International AS | h 2016   | 9709     | 62                              |              |      |
| (iii) $P(t > 0.6\mu) = P\left(z > \frac{0.6\mu - \mu}{\mu/3}\right)$ |                            | M1       |          | Standardising atte<br>variables | mpt with 1   | or 2 |
|                                                                      | = P(z > -1.2)<br>= 0.885   | M1<br>A1 | 3        | Eliminating $\mu$ or $c$        | <del>.</del> |      |
|                                                                      |                            | 111      | 5        | Correct final answ              | ver          |      |