MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/43

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2015	9709	43

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol I implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2015	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4					Syllabus 9709	Paper	
	Cambridge International AS/A Level – October/November 2015					43	
1	Tension is 30 N	B1					
				For resolving fo		n <i>B</i> ,	
	$[R = (4g - 30) \times 0.8]$	M1			the plane.	he plane.	
	Normal component is 8 N	A1	3				
2	$F = T\cos\alpha = 0.96T$	B 1					
	$R = 0.2g - T\sin\alpha = 2 - 0.28T$	B 1					
	[0.96T = 0.25(2 - 0.28T)]	M1		For using $F = \mu$.	R		
	$[(0.96 + 0.07)T = 0.5 \rightarrow T =]$	M1		For solving resu	ltant equatio	n for T	
	T = 0.485	A1	5				
3		M1		For resolving forces in the x or $-x$ direction		or	
	$120\cos75^\circ = 150 - 100 - P\cos\theta^\circ$	A1					
		M1		For resolving fo	orces in the y	tes in the <i>y</i> direction	
	$120\sin75^\circ = P\sin\theta^\circ$	A1					
	$[P^2 = 14400 - 12000\cos 75^\circ + 2500]$			For using P^2			
	or $\tan\theta = [120\sin75^{\circ}/(50 - 120\cos75^{\circ})]$	M1		$= (P\cos\theta)^2 + (P\sin\theta)^2 \text{ or for using}$ $P\sin\theta / P\cos\theta = \tan\theta$			
	$P = 117 \text{ or } \theta = 80.7$	A1					
	$\theta = 80.7 \text{ or } P = 117$	B1	7				
4 (i)		M1		For applying Ne or to <i>B</i> or for us $m_Ag - m_Bg = (m_A)$	ing	nd law to A	
	0.35g - T = 0.35a T - 0.15g = 0.15a (0.35 - 0.15)g = (0.35 + 0.15)a	A1		Two of the three	e equations		
	Acceleration is 4 ms^{-2}	B1					
	Tension is 2.1 N	B1	4				
(ii)	$[v_1^2 = 0 + 8 \times 1.6 \ (= 12.8)]$	M1		For using $v_1^2 = 0$	$0 + 2a \times 1.6$		
	$[H = 1.6 + (-12.8) \div (-20)]$	M1		For using $H = 1$ or for using $h =$	$.6 + (0 - v_1^2) (0 - v_1^2) / (-2)$	/(-2g) g)	
	Greatest height is 2.24 m	A1	3				

Cambridge International AS/A Level – October/November 20155 (i) $a = (5^2 - 3^2) \div (2 \times 500) = 0.016$ B1 M1 M1 DF + 90g × 0.05 - R = 90 × 0.016For using Newton'	9709 43 's 2 nd law		
$(5^2 - 3^2) \div (2 \times 500) = 0.016$ B1 M1 For using Newton'	's 2 nd law		
$(5^2 - 3^2) \div (2 \times 500) = 0.016$ B1 M1 For using Newton'	's 2 nd law		
	's 2 nd law		
$[R = \frac{420}{v} - 90(0.016 - 0.5)]$ M1 For using $DF = P/$	For using $DF = P/v$		
$R = \frac{420}{v} + 43.56$ AG AG	AG		
SR for assuming co (max 2/5) PE loss = 90g(500) KE gain = $\frac{1}{2}$ (90) WD _{DF} +PE loss = K $\rightarrow R = 420/\nu + 43$)(0.05) and (5 ² -3 ²) B1 KEgain+WD _R		
(ii) $v_M^2 = 3^2 + 2 \times 0.016 \times 250 \rightarrow$			
speed at mid-point is 4.12ms^{-1} B1			
[Decrease in R from top to mid-way =420[(1÷3) - (1÷ $\sqrt{17}$)]	Yourses in D. for either		
or [Decrease in <i>R</i> from midway to b'm = $420[(1 \div \sqrt{17}) - (1 \div 5)]$ M1 For finding the difference of the difference	ference in R for either nidway to bottom		
38.1 and 17.9 A1 3			
6 (i) Time taken = $\frac{0.08}{0.0002} = 400 \text{ s}$ B1			
$v = \frac{\mathrm{d}x}{\mathrm{d}t} = 0.16t - 0.0006t^2$ B1			
[speed = $-0.16 \times 400 + 0.0006 \times 400^2$] M1 For evaluating $\pm v(4)$	400)		
Speed at O is 32 ms^{-1} A14			
(ii) (a) Time to furthest point is $0.16/0.0006$ s B1 $\sqrt[h]{}$ $v = 0.16t - kt^2$ v = kt - 0.000	2 or $06t^{2}$ from part (i)		
$\begin{bmatrix} 0.08(800/3)^2 - 0.0002(800/3)^3 \\ (\times 2) \end{bmatrix} $ M1 [*] For evaluating $x(t_{\text{furthest point}})$ (×2))		
Distance moved is 3790 m A1 3			
(b) $[speed = 3790/400 \text{ ms}^{-1}]$ dM1 [*] For using 'average moved/time taken	e speed = total distance		
Average speed is 9.48 ms ^{-1} A1 2			

Page 6	Mark Scheme			Syllabus	Paper	
	Cambridge International AS/A Level -	- Octol	ber/No	ovember 2015	9709	43
7 (i)	Gain in KE = $\frac{1}{2}$ 1250(8 ² - 5 ²)	B1				
	Loss in PE = $1250g \times 400\sin^{\circ}4^{\circ}$	B1				
	$400(DF) = \frac{1}{2} 1250 (8^{2} - 5^{2}) - 1250g \times 400\sin^{40} + 2000 \times 400$	M1 A1		For using WD by DF = Gain in KE – Loss in PE + WD by resistance		
	Driving force is 1189 N or 1190 N	A1	5			
				SR for using Newton's second law (max 2/5) $DF + 1250gsin4^{\circ} - 2000 = 1250a$ B1 $a = (8^2 - 5^2)/2 \times 400 \rightarrow DF = 1190$ N B1		
(ii)		M1		For using Newton's second law to find acceleration or for finding v_c and using $v^2 = u^2 + 2as$ to find acceleration		
	$1189 \times 2 - 2000 = 1250a$ or $22.75^2 = 8^2 + 2a \times 750$	A1√ [^]		√ <i>DF</i> from part	(i)	
	Acceleration is 0.302 ms^{-2}	A1	3			
(iii)	$v_c^2 = 64 + 2 \times 0.302 \times 750$	B1√ [≜]		\checkmark acceleration f	rom part (ii)	
	$[P/22.75 - 2000 = 1250 \times 0.302]$	M1				
	Power is 54.1 kW or 54100 W	A1	3			