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y = x2 + 1

�2, 5�

�0, 1�

The diagram shows part of the curve y = x2
+ 1. Find the volume obtained when the shaded region is

rotated through 360� about the y-axis. [4]
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The diagram shows a triangle AOB in which OA is 12 cm, OB is 5 cm and angle AOB is a right angle.

Point P lies on AB and OP is an arc of a circle with centre A. Point Q lies on AB and OQ is an arc of

a circle with centre B.

(i) Show that angle BAO is 0.3948 radians, correct to 4 decimal places. [1]

(ii) Calculate the area of the shaded region. [5]

3 (i) Find the first 3 terms, in ascending powers of x, in the expansion of �1 + x�5. [2]

The coefficient of x2 in the expansion of
�
1 + �px + x2��5

is 95.

(ii) Use the answer to part (i) to find the value of the positive constant p. [3]

4 A curve has equation y =
12

3 − 2x
.

(i) Find
dy

dx
. [2]

A point moves along this curve. As the point passes through A, the x-coordinate is increasing at a

rate of 0.15 units per second and the y-coordinate is increasing at a rate of 0.4 units per second.

(ii) Find the possible x-coordinates of A. [4]
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5 (i) Show that the equation 1 + sin x tan x = 5 cos x can be expressed as

6 cos2 x − cos x − 1 = 0. �3�

(ii) Hence solve the equation 1 + sin x tan x = 5 cos x for 0� ≤ x ≤ 180�. [3]

6 The equation of a curve is y = x3
+ ax2

+ bx, where a and b are constants.

(i) In the case where the curve has no stationary point, show that a2
< 3b. [3]

(ii) In the case where a = −6 and b = 9, find the set of values of x for which y is a decreasing function

of x. [3]
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The diagram shows a pyramid OABCX. The horizontal square base OABC has side 8 units and the

centre of the base is D. The top of the pyramid, X, is vertically above D and XD = 10 units. The

mid-point of OX is M. The unit vectors i and j are parallel to
−−→
OA and

−−→
OC respectively and the unit

vector k is vertically upwards.

(i) Express the vectors
−−→
AM and

−−→
AC in terms of i, j and k. [3]

(ii) Use a scalar product to find angle MAC. [4]

8 (a) The sum, Sn, of the first n terms of an arithmetic progression is given by Sn = 32n − n2. Find the

first term and the common difference. [3]

(b) A geometric progression in which all the terms are positive has sum to infinity 20. The sum of

the first two terms is 12.8. Find the first term of the progression. [5]

[Questions 9, 10 and 11 are printed on the next page.]
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The diagram shows a trapezium ABCD in which AB is parallel to DC and angle BAD is 90�. The

coordinates of A, B and C are �2, 6�, �5, −3� and �8, 3� respectively.

(i) Find the equation of AD. [3]

(ii) Find, by calculation, the coordinates of D. [3]

The point E is such that ABCE is a parallelogram.

(iii) Find the length of BE. [2]

10 A curve is such that
d2y

dx2
=

24

x3
− 4. The curve has a stationary point at P where x = 2.

(i) State, with a reason, the nature of this stationary point. [1]

(ii) Find an expression for
dy

dx
. [4]

(iii) Given that the curve passes through the point �1, 13�, find the coordinates of the stationary

point P. [4]

11 The function f : x �→ 6 − 4 cos
�

1
2
x
�

is defined for 0 ≤ x ≤ 2�.

(i) Find the exact value of x for which f�x� = 4. [3]

(ii) State the range of f. [2]

(iii) Sketch the graph of y = f�x�. [2]

(iv) Find an expression for f −1�x�. [3]
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