MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/31

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	31

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	31

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4		ge 4	Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – May/June 2014	9709		31
1	(i)	State sin2 Obtain 2	$\alpha = 2\sin\alpha\cos\alpha$ and $\sec\alpha = 1/\cos\alpha$ $\sin\alpha$		B1 B1	[2]
	(ii)	Use cos2, Solve thre	$\beta = 2\cos^2\beta - 1$ or equivalent to produce correct equation in correct equation for $\cos\beta$	hoseta	B1 M1	
		Obtain co	$\cos\beta = \frac{1}{3} \text{ only}$		A1	[3]
2	Stat	the $\frac{\mathrm{d}u}{\mathrm{d}x} = 3\mathrm{se}$	$ec^2 x$ or equivalent		B1	
	Exp	oress integr	al in terms of u and du (accept unsimplified and without lin	nits)	M1	
	Obt	ain $\int \frac{1}{3} u^{\frac{1}{2}}$	du		A1	
	Inte	egrate $Cu^{\frac{1}{2}}$	to obtain $\frac{2C}{3}u^{\frac{3}{2}}$		M1	
	Obt	ain $\frac{14}{9}$			A1	[5]
3	Obt	ain $\frac{2}{2t+3}$	for derivative of <i>x</i>		B1	
	Use	quotient c	f product rule, or equivalent, for derivative of y		M1	
	Obt	ain $\frac{5}{(2t+3)}$	$\frac{1}{p^2}$ or unsimplified equivalent		A1	
	Obt	ain $t = -1$			B1	
	Use	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}/$	$\frac{\mathrm{d}x}{\mathrm{d}t}$ in algebraic or numerical form		M1	
	Obt	ain gradier	tt $\frac{5}{2}$		A1	[6]
4	Sep	arate varia	bles correctly and recognisable attempt at integration of at le	east one side	M1	
	Obt	ain ln <i>y</i> , or	equivalent		B1	
	Obt	ain $k \ln(2 +$	$-e^{3x}$		B1	
	Use	y(0) = 36	to find constant in $y = A(2 + e^{3x})^k$ or $\ln y = k \ln(2 + e^{3x}) + c$	or equivalent	M1*	
	Obt	ain equatio	on correctly without logarithms from $\ln y = \ln \left(A \left(2 + e^{3x} \right)^k \right)$		*M1	
	Obt	ain $y = 4(2)$	$(2+e^{3x})^2$		A1	[6]

Page 5		ige 5	Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – May/June 2014	9709	3	1
5	(i)	<u>Either</u>	Multiply numerator and denominator by $\sqrt{3} + i$ and use $i^2 =$	=1	M1	
			Obtain correct numerator $18 + 18\sqrt{3}i$ or correct denominato	r 4	B1	
			Obtain $\frac{9}{2} + \frac{9}{2}\sqrt{3}i$ or $(18 + 18\sqrt{3}i)/4$		A1	
			Obtain modulus or argument		M1	
			Obtain $9e^{\frac{1}{3}\pi i}$		A1	[5]
		<u>OR</u>	Obtain modulus and argument of numerator or denominator moduli or both arguments	r, or both	M1	
			Obtain moduli and argument 18 and $\frac{1}{6}\pi$ or 2 and $-\frac{1}{6}\pi$			
			or moduli 18 and 2 or arguments $\frac{1}{6}\pi$ and $-\frac{1}{6}\pi$ (allow deg	grees)	B1	
			Obtain $18e^{\frac{1}{6}\pi i} \div 2e^{-\frac{1}{6}\pi i}$ or equivalent		A1	
			Divide moduli and subtract arguments		M1	
			Obtain $9e^{\overline{3}^{n+1}}$		A1	[5]
	(ii)	State 3e	$\frac{1}{6}\pi^{i}$, following through their answer to part (i)		B1√^	
		State 3e	$\frac{1}{6}\pi i \pm \frac{1}{2}\pi i$, following through their answer to part (i)		B1√	
		Obtain 3	$e^{-\frac{5}{6}\pi i}$		B1	[3]
6	(i)	Use law AND for	for the logarithm for a product or quotient or exponentiation		M1	
		Obtain (4	$4x - 5)^2(x + 1) = 27$		B1	
		Obtain g	iven equation correctly $16x^3 - 24x^2 - 15x - 2 = 0$		A1	[3]
	(ii)	Obtain <i>x</i>	= 2 is root or $(x - 2)$ is a factor, or likewise with $x = -\frac{1}{4}$		B1	
		Divide b Obtain q	y $(x - 2)$ to reach a quotient of the form $16x^2 + kx$ uotient $16x^2 + 8x + 1$		M1 A1	
		Obtain (x	$(x-2)(4x+1)^2$ or $(x-2)$, $(4x+1)$, $(4x+1)$		A1	[4]
	(iii)	State $x =$	2 only		A1	[1]
7	(i)	Obtain 2 Obtain 2	x - 3y + 6z for LHS of equation x - 3y + 6z = 23		B1 B1	[2]
	(ii)	Either	Use correct formula to find perpendicular distance		M1	
			Obtain unsimplified value $\frac{\pm 23}{\sqrt{2^2 + (-3)^2 + 6^2}}$, following ans	wer to (i)	A1√	
			Obtain $\frac{23}{7}$ or equivalent		A1	[3]

	Pa	ige 6	Mark Scheme	Syllabus	Pape	er
			GCE A LEVEL – May/June 2014	9709	31	
		<u>OR 1</u>	Use scalar product of $(4, -1, 2)$ and a vector normal to the pla	ane	M1	
			Use unit normal to plane to obtain $\pm \frac{(8+3+12)}{\sqrt{49}}$		A1	
			Obtain $\frac{23}{7}$ or equivalent		A1	[3]
		<u>OR 2</u>	Find parameter intersection of <i>p</i> and $\mathbf{r} = \mu (2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k})$		M1	
			Obtain $\mu = \frac{23}{49}$ [and $\left(\frac{46}{49}, -\frac{69}{49}, \frac{138}{49}\right)$ as foot of perpendicula	ar]	A1	
			Obtain distance $\frac{23}{7}$ or equivalent		A1	[3]
	(iii)	Either	Recognise that plane is $2x - 3y + 6z = k$ and attempt use of for perpendicular distance to plane at least once	ormula for	M1	
			Obtain $\frac{ 23-k }{7} = 14$ or equivalent		A1	
		OB	Obtain $2x - 3y + 6z = 121$ and $2x - 3y + 6z = -75$. 1 .	A1	[3]
		<u>0R</u>	Recognise that plane is $2x - 3y + 6z = k$ and attempt to find a point on <i>q</i> using <i>l</i> with $\lambda = \pm 2$	t least one	M1	
			Obtain $2x - 3y + 6z = 121$		A1	
			Obtain $2x - 3y + 6z = -75$		A1	[3]
8	(i)	Sketch y	$= \cos \cos x$ for at least 0 $x = \pi$		B 1	
0	(1)	Sketch v	$= r(\pi - r) \text{ for at least } 0, r, \pi$		B1	
		Justify st	atement concerning two roots, with evidence of 1 and $\frac{1}{4}\pi^2$ for	or <i>y</i> -values	DI	
		on gra	ph via scales 4		B1	[3]
	(ii)	Use cose	$cx = \frac{1}{\sin x}$ and commence rearrangement		M1	
		Obtain g	iven equation correctly, showing sufficient detail		A1	[2]
	(iii)	(a) Use	the iterative formula correctly at least once		M1	
	()	Obta	ain final answer 0.66		Al	
		Sho	w sufficient iterations to 4 decimal places to justify answer or	show a		
		si	gn change in the interval (0.655, 0.665)		A1	[3]
		(b) Obta	ain 2.48		B1	[1]

	Pa	ige 7	Mark Scheme	Syllabus	Pa	per
			GCE A LEVEL – May/June 2014	9709		31
9	(i)	<u>Either</u>	State or imply partial fractions are of form $\frac{A}{3-x} + \frac{B}{1+2x} + \frac{B}{1+2x}$	$\frac{C}{(1+2x)^2}$	B1	
			Use any relevant method to obtain a constant		M1	
			Obtain $A = 1$		A1	
			Obtain $B = \frac{3}{2}$		A1	
			Obtain $C = -\frac{1}{2}$		A1	[5]
		<u>Or</u>	State or imply partial fractions are of form $\frac{A}{3-x} + \frac{Dx+E}{(1+2x)^2}$		B1	
			Use any relevant method to obtain a constant		M1	
			Obtain $A = 1$ Obtain $D = 3$		AI A1	
			Obtain $E = 1$		A1	[5]
	(ii)	Obtain th	the first two terms of one of the expansion of $(3-x)^{-1}$, $\left(1-\frac{1}{3}x\right)^{-1}$	$\left(z \right)^{-1}$		
		$(1+2x)^{-1}$	$(1+2x)^{-2}$		M1	
		Obtain c	orrect unsimplified expansion up to the term in x^2 of each particular terms of the term in x^2 of each particular terms of the term in x^2 of each particular terms of the term in x^2 of the term is the term in x^2 of the term in x^2 of the term is the term in x^2 of the term in x^2 of the term is the term in x^2 of the term in x^2 of the term is the term in x^2 of the term in x^2 of the term is the term in x^2 of the term in x^2 of the term is the term in x^2 of the term in x^2 of the term is the term in x^2 of the term is the term in x^2 of the term in x^2 of the term is the term in x^2 of the term in x^2 of the term is the term in x^2 of terms of te	rtial fraction,		
		follow	ving in each case the value of A, B, C		A1√	
					A1√	
		Obtain a	nswer $\frac{4}{3} - \frac{8}{9}x + \frac{1}{27}x^2$		A1	[5]
		[If A, D, multip	<i>E</i> approach used in part (i), give M1A1 $\sqrt[4]{A1}$ for the expans olying out fully and A1 for final answer]	ions, M1 for		
10	(i)	Use of p	roduct or quotient rule		M1	
		Obtain -	$-5e^{-\frac{1}{2}x}\sin 4x + 40e^{-\frac{1}{2}x}\cos 4x$		A1	
		Equate $\frac{4}{6}$	$\frac{dy}{dx}$ to zero and obtain $\tan 4z = k$ or $R \cos(4x \pm \alpha)$		M1	
		Obtain ta	$an 4x = 8 \text{ or } \sqrt{65} \cos\left(4x \pm \tan^{-1}\frac{1}{8}\right)$		A1	
		Obtain 0	.362 or 20.7°		A1	[7]
		Obtain I	.14 / or 65. /°		AI	[6]
	(ii)	State or i	imply that x-coordinates of T_n are increasing by $\frac{1}{4}\pi$ or 45°		B1	
		Attempt	solution of inequality (or equation) of form $x_1 + (n-1)k\pi$. 2	5	M1	
		Obtain n	$a > \frac{4}{\pi} (25 - 0.362) + 1$, following through on their value of x_1		A1√ [^]	
		n = 33	<i>76</i>		A1	[4]