MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/12

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{"}$ marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme			Syllabus	Paper		
	GCE AS/A LEVEL – Ma		ay/June 2014		9709	12		
1	(2, 7) to $(10, 3)$							
	Mid-point (6	B1	co					
	Gradient = $-\frac{1}{2}$	² / ₂ – 2	BI D1	co				
	For $y = 5 = 2$	$\frac{-2}{(r-6)}$	M1	co Must be correct form of Pern				
	Sets y to $0 = 2$	$\rightarrow (3^{1/2} 0)$	A1	co $x = 3\frac{1}{2}$ only is ok.				
	5 0 13 <i>y</i> 10 0,	[5]						
2	$\left(1+x^2\right)\left(\frac{x}{2}-\frac{4}{x}\right)$	⁶ .						
	Term in $x^2 = 1$	$15 \times \frac{1}{16} \times (-4)^2 = 15$	B1 B1	B1 unsimplified. B1 15.				
	Constant term	$n = 20 \times \frac{1}{8} \times (-4)^3 = -160$	B1 B1	B1 unsimplified. B1 -160				
	Coefficient of	$f_{x^2} = -145$	B1√^	Uses 2 terms. I on previous answers				
			[5]		I			
3	reflex angle θ	is such that $\cos\theta = k$,						
	(i) (a) sin ($\theta = -\sqrt{(1-k^2)}$	B1 B1	(-) B1	rest B1			
		$\sqrt{1-L^2}$	[2]					
	(b) Use	$s t = s/c \rightarrow \frac{-\sqrt{1-\kappa}}{l}$	B1√^	√^ for (i)	$\div k$.			
		ĸ	[1]					
	(ii) θ is in 4t	h quadrant.						
	2θ lies be	etween 540° and 720°	B1	co				
	$\sin 2\theta$ is r	negative in both these quadrants.	B1	со				
			[2]					
4	(i)							
	$\frac{1}{2}r^2\theta =$	$\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta$	B1	Correct e	equation.			
	$\rightarrow 2 \sin^2$	$\theta = \theta \rightarrow p = 2.$	B1	All ok –	answer given.			
			[2]		C			
	(ii) Chord let	$ngth = 8sin1.2 \times 2 (14.9)$	M1	Needs ×2	2. Any method ok.			
	(or from	cosine rule) th = 2.4×8 (19.2)	B1					
	Perimete	r = sum of these = 34.1	Al	со				
			[3]					
	1	$\cos\theta$						
5	(i) $\frac{1}{\cos\theta} - \frac{1}{1}$	$\frac{\cos\theta}{1+\sin\theta} \equiv \tan\theta$.	M1	Correct a	addition of fraction	18		
	1	$+s-c^2$ s^2+s s						
	LHS = -	$\frac{1}{c(1+s)} = \frac{z+s}{c(1+s)} = \frac{s}{c}$	M1M1	Use of s^2	$c^{2}+c^{2}=1.(1+s)$ cano	celled.		
	$= \tan \theta$	× / × /	A1	\rightarrow answe	er given.			
	(ii) $\rightarrow \tan\theta$	$+2=0$ ie $\tan\theta = -2$	M1	Uses par	t (i). Allow tan <i>θ</i> =₌	⊧2		
	$\rightarrow \theta = 1$	116.6° or 296.6°	A1 A1√	Co. √ fc	or 180° + and no ot	her solutions in		
			[3]	the range	2.			

	Page 5		Mark Scheme			Syllabus	Paper	
			GCE AS/A LEVEL – Ma	GCE AS/A LEVEL – May/June 2014			12	
6	(i) GP	8	$8 r 8r^2$					
	AP	8	8+8d $8+20d$					
	8r =	$8r = 8 + 8d$ and $8r^2 = 8 + 20d$		B1 B1	B1 for ea	r each equation.		
	Elin	ninate	$es d \to 2r^2 - 5r + 3 = 0$	M1	Correct elimination.			
	$\rightarrow r$	r = 1.1	5 (or 1)	A1	co (no penalty for including $r = 1$)			
	(ii) 4th t	term (of GP = $ar^3 = 8 \times 27/8 = 27$	[4] B1√	со			
	4th t	term (of AP = $a + 3d = 9\frac{1}{2}$	M1A1 [3]	needs $a + 3d$ and correct method for d			
7	(i) (b –	a).(b	$\mathbf{c} - \mathbf{c} = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix}$	M1 M1	AB = b - a once $(a - b$ is ok) Use of x_1x_{2} with AB and CB			
	\rightarrow -	-6 -	$2+8=0 \rightarrow 90^{\circ}$	A1 [3]	All corre	et		
	(ii) Unit	t vecto	or = $\frac{1}{3}\begin{pmatrix} 2\\1\\-2 \end{pmatrix}$	M1	Method for unit vector.			
	CD	$\mathbf{CD} = 12 \times \text{unit vector} = \pm \begin{pmatrix} 8\\ 4\\ -8 \end{pmatrix}$		M1	Knows to multiply by 12 or ±4 BA			
	OD	= 00	$C + \mathbf{C}\mathbf{D} = \begin{pmatrix} 12\\9\\-2 \end{pmatrix}$	M1 A1 [4]	Correct r	nethod. co		
8	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2x$	x – 1						
	$\rightarrow \int \frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - x + c$			B1	Correct i	ntegration (ignore	(e^{+c})	
	$dx = 0 \text{ when } r = 3 \implies c = -6$			M1 A1	Uses a constant of integration as			
	$r^{2} - r - 6 - 0$ when $r = -2$ (or 3)				Puts du/dr to 0			
	x - x - 0 = 0 when x - 2 (015)			Δ1 D1./D1./	Fulls dy/dx to 0			
				M1	Correct r	nethod for k		
	$\rightarrow k - 5$ $\rightarrow y = 10$	$0\frac{5}{6}$		A1 [8]	Co –r 10	.8		

Page 6		Mark Scheme			Syllabus	Paper		
		GCE AS/A LEVEL – May/June 2014			9709	12		
9 y	$=8-\sqrt{4-x}$	-						
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2}$	$(4-x)^{-\frac{1}{2}} \times -1$	B1 B1	Without	(−1). For (×−1).			
(ii)	$\int y dx = 8$ Eqn $y - \frac{1}{2}$ $\rightarrow y = \frac{1}{2}$	$3x - \frac{(4-x)^{\frac{3}{2}}}{\frac{3}{2}} \div -1$ $7 = \frac{1}{2}(x-3)$ $\frac{1}{2}(x-3)$	3 × B1 [5] M1A1	B1 for "8x" and $+c$ ". B1 for all except $\div(-1)$. B1 for $\div(-1)$. (n.b. these 5 marks can be gained in(ii) or (iii)) M1 unsimplified. A1 as $y=mx+c$				
(iii)	Area unde Area unde	er curve = \int from 0 to 3 (58/3) er line = $\frac{1}{2}(5\frac{1}{2} + 7) \times 3$	M1 M1	Use of limits – needs use of "0" Correct method				
	$Or\left[\frac{1}{4}x^{2}\right]$ $\rightarrow \frac{58}{3}$	$+\frac{11x}{2} \text{from 0 to 3}$ $\frac{75}{4} = \frac{7}{12}$	M1 A1 [4]	M1 Subt	raction. Al co			
10 0	•	- m						
10 f g :	$x \mapsto 2x - 3$ $x \mapsto x^2 + 4$	$3, x \in \mathbb{R}, \\ x, x \in \mathbb{R}.$						
(i)	ff = $2(2x + Solves = (or 2x-3))$	$\begin{array}{l} -3) -3 \\ 11 \rightarrow x = 5 \\ =11, x = 7. \ 2x - 3 = 7 \rightarrow x = 5) \end{array}$	M1 A1 [2]	Either fo equation	orms ff correctly, o s co	or solves 2		
(ii)	$ \min at x = \\ \rightarrow \text{ Range} $	z = -2 $z \ge -4$	M1 A1 [2]	Any vali	d method – could	be guesswork.		
(iii)	$x^{2} + 4x - $ $\rightarrow x = 2$ $\rightarrow x < -x$	12 (>0) or -6 6 , $x > 2$.	M1 A1 A1	Makes q Correct l co	uadratic = $0 + 2$ so limits – even if >,	olutions <,≥,≤,=		
(iv)	$gf(x) = (2)$ $\rightarrow 4x^2 - 4x^2 $	$x-3)^{2} + 4(2x-3) = p$ 4x-3-p=0	[3] B1	co unsin Use of d	nplified iscriminant			
	$ Uses "b^2 - p = - $	-4ac'' 16 = 16(-3-p)	M1 A1 [3]	со				
(v)	- 2		B1 [1]	со				
(vi)	v = (r + 2)	$(2)^{2} - 4$	B2 1	-1 for ea	ach error			
	y = (x + 2) $\sqrt{y \pm 4} =$	r + 2	M1	Correct of	order of operation	S		
	$\sqrt{y} + 4 =$ h ⁻¹ (x) =	$\sqrt{x+2}$ $\sqrt{x+4}-2$		co with y	x, not y . \pm left A0.			
			[]]					