

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

MATHEMATICS

9709/31
May/June 2011
1 hour 45 minutes

Additional Materials: Answer Booklet/Paper Graph Paper List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.
Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an electronic calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 75 .
Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.

1 Expand $\sqrt[3]{ }(1-6 x)$ in ascending powers of x up to and including the term in x^{3}, simplifying the coefficients.

2 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in each of the following cases:
(i) $y=\ln (1+\sin 2 x)$,
(ii) $y=\frac{\tan x}{x}$.

3 Points A and B have coordinates $(-1,2,5)$ and $(2,-2,11)$ respectively. The plane p passes through B and is perpendicular to $A B$.
(i) Find an equation of p, giving your answer in the form $a x+b y+c z=d$.
(ii) Find the acute angle between p and the y-axis.

4 The polynomial $\mathrm{f}(x)$ is defined by

$$
\mathrm{f}(x)=12 x^{3}+25 x^{2}-4 x-12
$$

(i) Show that $\mathrm{f}(-2)=0$ and factorise $\mathrm{f}(x)$ completely.
(ii) Given that

$$
\begin{equation*}
12 \times 27^{y}+25 \times 9^{y}-4 \times 3^{y}-12=0 \tag{3}
\end{equation*}
$$

state the value of 3^{y} and hence find y correct to 3 significant figures.

5 The curve with equation

$$
6 \mathrm{e}^{2 x}+k \mathrm{e}^{y}+\mathrm{e}^{2 y}=c
$$

where k and c are constants, passes through the point P with coordinates $(\ln 3, \ln 2)$.
(i) Show that $58+2 k=c$.
(ii) Given also that the gradient of the curve at P is -6 , find the values of k and c.

6

The diagram shows a circle with centre O and radius 10 cm . The chord $A B$ divides the circle into two regions whose areas are in the ratio $1: 4$ and it is required to find the length of $A B$. The angle $A O B$ is θ radians.
(i) Show that $\theta=\frac{2}{5} \pi+\sin \theta$.
(ii) Showing all your working, use an iterative formula, based on the equation in part (i), with an initial value of 2.1 , to find θ correct to 2 decimal places. Hence find the length of $A B$ in centimetres correct to 1 decimal place.

7 The integral I is defined by $I=\int_{0}^{2} 4 t^{3} \ln \left(t^{2}+1\right) \mathrm{d} t$.
(i) Use the substitution $x=t^{2}+1$ to show that $I=\int_{1}^{5}(2 x-2) \ln x \mathrm{~d} x$.
(ii) Hence find the exact value of I.

8 The complex number u is defined by $u=\frac{6-3 \mathrm{i}}{1+2 \mathrm{i}}$.
(i) Showing all your working, find the modulus of u and show that the argument of u is $-\frac{1}{2} \pi$.
(ii) For complex numbers z satisfying $\arg (z-u)=\frac{1}{4} \pi$, find the least possible value of $|z|$.
(iii) For complex numbers z satisfying $|z-(1+\mathrm{i}) u|=1$, find the greatest possible value of $|z|$.

9 (i) Prove the identity $\cos 4 \theta+4 \cos 2 \theta \equiv 8 \cos ^{4} \theta-3$.
(ii) Hence
(a) solve the equation $\cos 4 \theta+4 \cos 2 \theta=1$ for $-\frac{1}{2} \pi \leqslant \theta \leqslant \frac{1}{2} \pi$,
(b) find the exact value of $\int_{0}^{\frac{1}{4} \pi} \cos ^{4} \theta \mathrm{~d} \theta$.
[Question 10 is printed on the next page.]

10 The number of birds of a certain species in a forested region is recorded over several years. At time t years, the number of birds is N, where N is treated as a continuous variable. The variation in the number of birds is modelled by

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{N(1800-N)}{3600} .
$$

It is given that $N=300$ when $t=0$.
(i) Find an expression for N in terms of t.
(ii) According to the model, how many birds will there be after a long time?

