
This document consists of 12 printed pages.

DC (NF/SW) 144918/4 R
© UCLES 2017 [Turn over

*
6
8
2
1
8
0
4
0
7
1
*

COMPUTER SCIENCE 9608/41
Paper 4 Further Problem-solving and Programming Skills May/June 2017
PRE-RELEASE MATERIAL

No Additional Materials are required.
This material should be given to the relevant teachers and candidates as soon as it has been received
at the Centre.

READ THESE INSTRUCTIONS FIRST

Candidates should use this material in preparation for the examination. Candidates should attempt the
practical programming tasks using their chosen high-level, procedural programming language.

Cambridge International Examinations
Cambridge International Advanced Subsidiary and Advanced Level

be
st

ex
am

he
lp

.c
om

2

9608/41/PRE/M/J/17© UCLES 2017

Teachers and candidates should read this material prior to the June 2017 examination for 9608 Paper 4.

Reminders

The syllabus states:

• there will be questions on the examination paper which do not relate to this pre-release material
• you must choose a high-level programming language from this list:

Visual Basic (console mode)
Python
Pascal / Delphi (console mode)

Note: A mark of zero will be awarded if a programming language other than those listed is used.

The practical skills for Paper 4 build on the practical skills covered in Paper 2. We therefore recommend
that candidates choose the same high-level programming language for this paper as they did for
Paper 2. This will give candidates the opportunity for extensive practice and allow them to acquire
sufficient expertise.

Questions on the examination paper may ask the candidate to write:

• structured English
• pseudocode
• program code

A program flowchart should be considered as an alternative to pseudocode for the documenting of an
algorithm design.

Candidates should be confident with:

• the presentation of an algorithm using either a program flowchart or pseudocode
• the production of a program flowchart from given pseudocode and vice versa.

Candidates will also benefit from using pre-release materials from previous examinations. These are
available on the teacher support site.

Declaration of variables

The syllabus document shows the syntax expected for a declaration statement in pseudocode.

DECLARE <identifier> : <data type>

If Python is the chosen language, each variable’s identifier (name) and its intended data type must be
documented using a comment statement.

Structured English – Variables

An algorithm in pseudocode uses variables, which should be declared. An algorithm in structured
English does not always use variables. In this case, the candidate needs to use the information given
in the question to complete an identifier table. The table needs to contain an identifier, data type and
description for each variable.

3

9608/41/PRE/M/J/17© UCLES 2017 [Turn over

TASK 1

Students at a college are given several tests during their course. A teacher wants to write
object-oriented software to process data about the tests.
For each test, the following are to be stored:

• one or more questions, up to a maximum of 10 questions
• the maximum number of marks for the test
• the level (A, S, G)

For each question, the following are to be stored:

• the question text
• the answer
• the maximum number of marks
• the topic

TASK 1.1

The relationship between Test and Question is shown in the following containment (aggregation)
class diagram.

– TestID : String
– Questions [1 : 10] : Question
– NumberOfQuestions : Integer
– MaxMarks : Integer
– Level : Char
– DateSet : Date

+ DesignTest()
+ PrintTest()
+ PrintAnswers()

1 1..*

Test

– QuestionID : String
– QuestionText : String
– Answer : String
– Marks : Integer
– Topic : String

+ SetQuestion()
+ GetQuestion() : String
+ GetMarks() : Integer
+ GetTopic() : String
+ GetAnswer() : String

Question

Explain what containment means in the context of OOP.

Investigate what other information this diagram conveys.

TASK 1.2

Write object-oriented program code to implement the classes.

Remember to use validation and error trapping where appropriate.

Key focus: Object-oriented programming

4

9608/41/PRE/M/J/17© UCLES 2017

TASK 2

The table shows part of the instruction set for a processor which has one general purpose register, the
Accumulator (ACC), and an Index Register (IX).

Note: these instructions are referred to in the syllabus sections 1.4.3 and 3.6.2.

Instruction
ExplanationOp

code Operand

LDM #n Immediate addressing. Load the number n to ACC.

LDD <address> Direct addressing. Load the contents of the location at the given address to
ACC.

LDI <address> Indirect addressing. The address to be used is at the given address. Load the
contents of this second address to ACC.

LDX <address> Indexed addressing. Form the address from <address> + the contents of the
index register. Copy the contents of this calculated address to ACC.

LDR #n Immediate addressing. Load the number n into IX.

STO <address> Store the contents of ACC at the given address.

ADD <address> Add the contents of the given address to the ACC.

INC <register> Add 1 to the contents of the register (ACC or IX).

DEC <register> Subtract 1 from the contents of the register (ACC or IX).

JMP <address> Jump to the given address.

CMP <address> Compare the contents of ACC with the contents of <address>.

CMP #n Compare the contents of ACC with number n.

JPE <address> Following a compare instruction, jump to <address> if the compare was TRUE.

JPN <address> Following a compare instruction, jump to <address> if the compare was FALSE.

AND #n Bitwise AND operation of the contents of ACC with the operand.

AND <address> Bitwise AND operation of the contents of ACC with the contents of <address>.

XOR #n Bitwise XOR operation of the contents of ACC with the operand.

XOR <address> Bitwise XOR operation of the contents of ACC with the contents of <address>.

OR #n Bitwise OR operation of the contents of ACC with the operand.

OR <address> Bitwise OR operation of the contents of ACC with the contents of <address>.

IN Key in a character and store its ASCII value in ACC.

OUT Output to the screen the character whose ASCII value is stored in ACC.

END Return control to the operating system.

5

9608/41/PRE/M/J/17© UCLES 2017 [Turn over

Notes:

denotes immediate addressing
B denotes a binary number, for example, B01001010
& denotes a hexadecimal number, for example, &4A

Tasks 2.1 to 2.7 all use one of the following two formats for symbolic addressing.

Format Example
<label>: <op code> <operand> START: LDM #0

<label>: <data> NUM1: B01001010

Tasks 2.1 to 2.5 show high-level language constructs written in pseudocode. Each task consists of
writing the assembly language equivalent of the given high-level language construct.

Write assembly language program code using the given instruction set.

Key focus: Low-level programming

6

9608/41/PRE/M/J/17© UCLES 2017

TASK 2.1

X A + B
END

Label
Instruction

CommentOp
code Operand

START: // load the content of A into ACC

// add the content of B to content of ACC

// store content of ACC at address X

END // end of program

X:

A: 5

B: 3

7

9608/41/PRE/M/J/17© UCLES 2017 [Turn over

TASK 2.2

IF X = A
 THEN
 OUTPUT CHR(X) // statements for THEN part
 ELSE
 A A + 1 // statements for ELSE part
ENDIF
END

Label
Instruction

CommentOp
code Operand

START: // load the content of X into ACC

// compare the content of ACC with content of A

// if not equal (FALSE), jump to ELSE

THEN: // instruction for the THEN part goes here

JMP ENDIF // jump over the ELSE part

ELSE: // instructions for ELSE part start here

ENDIF: END // end of program

A: 65

X: 67

Note: the built-in function CHR(X) returns the character that is represented by the ASCII code held
in X.

8

9608/41/PRE/M/J/17© UCLES 2017

TASK 2.3

REPEAT
 OUTPUT CHR(X)
 X X - 1
UNTIL X = A
END

Label
Instruction

CommentOp
code Operand

LOOP: // instructions to be repeated start here

// is content of ACC = content of A ?

// if not equal (FALSE), jump to LOOP

END // end of program

X: 90

A: 65

9

9608/41/PRE/M/J/17© UCLES 2017 [Turn over

TASK 2.4

FOR COUNT 1 TO 4
 OUTPUT CHARS[COUNT]
ENDFOR
END

Label
Instruction

CommentOp
code Operand

// set ACC to 1

// store contents of ACC in COUNT

// set IX to 0

LOOP: // COUNT = 4 + 1 ? starts here

// if equal (TRUE), jump to ENDFOR

// instructions to be repeated start here

// increment IX

// increment COUNT starts here

// jump to LOOP

ENDFOR: END // end of program

COUNT:

CHARS: 72 // 'H'

69 // 'E'

76 // 'L'

80 // 'P'

10

9608/41/PRE/M/J/17© UCLES 2017

TASK 2.5

WHILE X <> B
 OUTPUT CHARS[B]
 B B + 1
ENDWHILE
END

Label
Instruction

CommentOp
code Operand

LOOP: // load contents of X into ACC

// is contents of ACC = contents of B ?

// if equal (TRUE), jump to ENDWHILE

// instructions to be repeated start here

// set IX to B starts here

// set ACC to 1

// store content of ACC in FORCOUNT

// FORCOUNT = B + 1 ? starts here

// decrement ACC to FORCOUNT - 1

// FORCOUNT – 1 = B ?

// if equal (TRUE), jump to ENDFOR

// increment IX

// output CHARS[B] starts here

// increment B starts here

// jump back to start of while loop

END // end of program

FORCOUNT: // control variable for inner loop

X: 4

B: 0

CHARS: 72 // 'H'

69 // 'E'

76 // 'L'

80 // 'P'

11

9608/41/PRE/M/J/17© UCLES 2017 [Turn over

TASK 2.6

Output a string using indirect addressing.

Address
Instruction

CommentOp
code Operand

LOOP:
// use indirect addressing to load contents of

address found at address 100

// output character with ASCII code held in ACC

// load content of address 100

// increment ACC

// store content of ACC at address 100

// is content of ACC = 107 ?

// if not equal (FALSE), jump to LOOP

END // end of program

100 102

101

102 77 // 'M'

103 65 // 'A'

104 84 // 'T'

105 72 // 'H'

106 83 // 'S'

107

12

9608/41/PRE/M/J/17© UCLES 2017

TASK 2.7

Programmers use bitwise operations (AND, OR, XOR) to set or examine specific bits.

Example:

Label
Instruction

CommentOp
code Operand

START: LDD X // load content of X into ACC

AND MASK
// bitwise AND operation on content of ACC and

content of MASK

STO Y // store content of ACC in Y

END // end of program

X: B10101111

Y: // what does the value of Y tell you about X ?

MASK: B00000001

Write simple programs using the different bitwise operations (AND, OR, XOR) and different MASK content.

Identify the operation and MASK bit pattern to:

• set a bit to 1, leaving all other bits unchanged

• set a bit to 0, leaving all other bits unchanged

• test whether a specific bit is 1

• test whether a specific bit is 0.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International
Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after
the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local
Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

