

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/43

Paper 4 A Level Structured Questions

October/November 2018

MARK SCHEME

Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Cambridge International AS/A Level – Mark Scheme

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond
 the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- · marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2018 Page 2 of 14

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 3 of 14

Question			Answ	er	Marks	
1(a)(i)	peak	organic compound	explanation		2	
	х	alkane	London forces only OR no hydrogen bonding			
	Y	aldehyde	(Permanent dipole-dipole and London forces)			
	Z	carboxylic acid	(contains) hydrogen bonding			
		assignments [1] nation of Z OR X [1]				
1(a)(ii)	% of Z =	47/98 = 48%			1	
1(b)(i)	³⁷ C <i>l</i> and	⁸¹ Br			1	
1(b)(ii)	M peak $CH_2^{35}Cl^{79}Br$ M+2 peak $CH_2^{37}Cl^{79}Br$ OR $CH_2^{35}Cl^{81}Br$ M+4 peak $CH_2^{37}Cl^{81}Br$ two correct scores 1 mark all 3 correct scores 2 marks					
1(c)(i)	H ₂ C	CH ₃ CH ₃ SH SH Br	H ₃ C CH ₃ CH ₃	H ₃ C CH ₃ CH ₃ Br	3	
	M2 two o		any correct curly arrow [1] ws AND lone pair required on Br	[1]		

© UCLES 2018 Page 4 of 14

Question	Answer	Marks
1(c)(ii)	(major product is) formed via the most stable tertiary carbocation / intermediate OR tertiary halogenoalkane formed via more stable carbocation / intermediate	1
1(d)(i)	M1 ratio of the concentrations of solute in two (immiscible) solvents [1] M2 at equilibrium [1]	2
1(d)(ii)	$K_{\text{partition}} = (x/10)/(1.25-x/50)$ [1] 4.75(1.25-x) = 5x x = 5.9375/9.75 = 0.61 g [1] correct answer scores [2]	2

Question	Answer	Marks
2(a)	species that forms dative bond(s) to a (central) metal atom / ion	1
2(b)	$\begin{array}{c} OH_2 \\ OH_2 \\ OH_2 \\ OH_2 \\ \end{array}$ $\begin{array}{c} OH_2 \\ OH_2 \\ OH_2 \\ \end{array}$ $\begin{array}{c} OH_2 \\ OH_2 \\ OH_2 \\ \end{array}$ $\begin{array}{c} OH_2 \\ OH_2 \\ \end{array}$	2
2(c)(i)	$K_{sp} = [Ca^{2+}][C_2O_4^{2-}][1]$ units mol ² dm ⁻⁶ [1]	2
2(c)(ii)	$[Ca^{2+}] = [C_2O_4^{2-}] = 6.65 \times 10^{-3}/128.1 = 5.19 \times 10^{-5} \text{ mol dm}^{-3} [1]$ $K_{sp} = (5.19 \times 10^{-5})^2 = 2.7 \times 10^{-9} \text{ mol}^2 \text{ dm}^{-6} [1]$	2

© UCLES 2018 Page 5 of 14

Question				Answer	Marks	
3(a)	[1] for each column	[1] for each column				
			of unpaired rons in			
	element	3d	4s			
	Cr	5	1			
	Mn	5	0			
	Fe	4	0			
3(b)		and O ₂ [1] [1] Ito two levels and the company of	lower and upp	per orbitals [1] htary colour observed [1]	3	
0(1)()	M3 electron(s) pror					
3(d)(i)	precipitate A [Cu(H ₂ solution B [Cu(NH ₃) solution C Cu(CH ₃ C	2O)4(OH)2]	R Cu(OH)₂ [1]		3	
3(d)(ii)	Na ₂ CO ₃ or CO ₃ ²⁻				1	
3(d)(iii)	$CuCO_3 + 2CH_3CO_2H \rightarrow Cu(CH_3CO_2)_2 + CO_2 + H_2O$				1	
3(d)(iv)	any two for one ma fizzing / bubbles solid disappea green / blue soli	s / effervescen rs			1	

© UCLES 2018 Page 6 of 14

Question	Answer	Marks
3(e)	sum of the charges of the (four) ligands equals the oxidation number / charge of Pt \mathbf{OR} a calculation Pt +2, NH ₃ neutral / no charge, both $\mathbf{C}l^{-1}$ s –1 (so no overall charge)	1
3(f)(i)	CI NH ₃ Pt CI [1] square planar and 180° [1]	2
3(f)(ii)	M1 this can bond / bind with DNA [1] M2 which prevents replication of the DNA / strand OR prevents cell division [1]	2
3(g)	H_3N Pt O H_3N O	1

Question	Answer	Marks
4(a)	M1 solubility decreases (down the Group) [1] M2 because lattice energy and hydration energy decreases OR lattice energy and hydration energy become less exothermic / more endothermic [1] M3 because hydration energy decreases to a greater extent (than does ΔH_{Latt}) [1]	з
4(b)(i)	$(K_{\rm w} =) [H^{\dagger}][OH^{-}]$	1

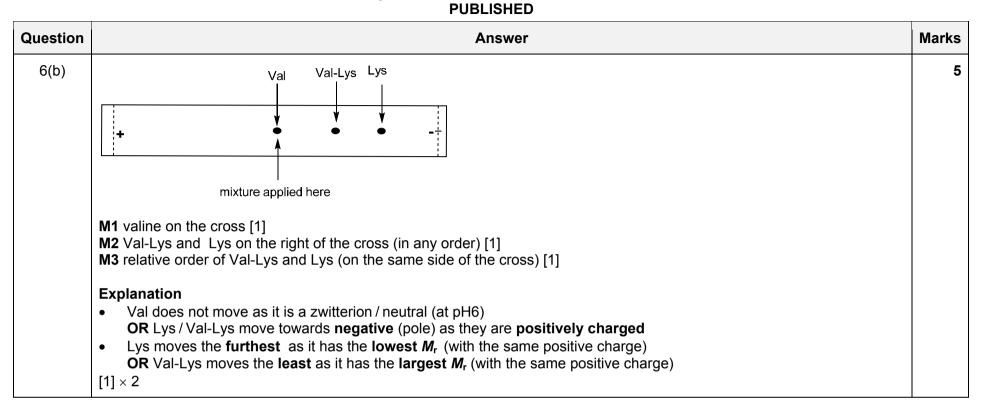
© UCLES 2018 Page 7 of 14

Question				Answer		Marks	
4(b)(ii)	[1] or each correct tick						
	effect of increasing temperature	decreases	stay the same	increase			
	рН	✓					
	ratio of [H ⁺]:[OH ⁻]		✓				
4(c)	$[H^{+}] = 10^{-13.25} = 5.62 \times 1$ $[OH^{-}] = K_{w}/[H^{+}] = 1.0 \times 1$ $[OH^{-}] = 0.18 (0.178) (mo)$	$10^{-14}/5.62 \times 10^{-14}$	- ⁻¹⁴ of correct answer s	cores [2]		2	
4(d)	$HCO_3^- + H^+ \rightarrow H_2CO_3 \ \mathbf{OR} \ HCO_3^- + H^+ \rightarrow CO_2 + H_2O \ [1]$ $H_2CO_3 + OH^- \rightarrow HCO_3^- + H_2O \ [1]$				2		
4(e)(i)	CH_3COOH + H ₂ O	•	H ₃ O ⁺ [1]			2	
4(e)(ii)	M1 moles NaOH = 0.15	× 20/1000 = 0	.0030 AND initial	moles CH ₃ C0	OOH = 0.25 × 30/1000 OR 0.0075 [1]	4	
	M2 equilibrium moles C	H ₃ COOH = 0. 0	0045 AND equilibri	um moles CH	I ₃ COONa = 0.0030 [1]		
	M3 [CH ₃ COOH] = 0.004 [H ⁺] = K_a		O AND [CH₃COON /[CH₃COONa] = 2				
	M4 pH = -log[H ⁺] = 4.6	[1] correct an	swer scores [4]				
4(f)(i)	end point = 28 cm ³					1	
4(f)(ii)	M1 reaction M bromoth	ymol (blue) / b	romocresol (green) AND reaction	on N bromothymol (blue) / thymolphthalein [1]	2	
	M2 (both indicators have	e) a pH range	/ colour change wi	thin / in end-բ	point / vertical region / sharp fall of the graph [1]		

© UCLES 2018 Page 8 of 14

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question		Answer Ma					
5(a)(i)	a)(i) [1] for each correct answer						
	numl	ber of peaks					
	F	3					
	G	6					
5(a)(ii)	one amide bond displayed in full [1]						
	rest of the struct	ture – one repeat unit onl	y [1]				
5(b)	[1] for each corre	[1] for each correct tick					
		σ-bonds only	π -bonds only	both σ - and π -bonds			
	bonds broken ✓						
	bonds forn	ned ✓					


© UCLES 2018 Page 9 of 14

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
5(c)	C ₆ H ₅ H CH ₃ H CH	2
5(d)(i)	C-C bonds are non-polar / have no dipole so cannot be hydrolysed [1]	1
5(d)(ii)	M1 Hydrolysis using acid / base / alkali / enzymes [1] M2 action of UV light [1]	2

Question	Answer	Marks
6(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
	M1 amide bond displayed [1] M2 rest of the structure [1]	

© UCLES 2018 Page 10 of 14

Question	Answer	Marks
7(a)	M1 C-X/C-C l /C-O bond is stronger (in chlorobenzene/phenol) [1] M2 p-orbital/lone pair on C l /O(H)/X (in chlorobenzene/phenol) [1] M3 electrons of the (C l /O/electronegative atom) AND overlap/delocalise with π -electron cloud/delocalise into ring [1]	3

© UCLES 2018 Page 11 of 14

Question	Answer	Marks
7(b)	OH 2-bromophenol structure and name correct [1]	2
7(c)(i)	step 1 conc. HNO ₃ + H ₂ SO ₄ (and temperare 50–55 °C) [1] step 2 Sn + HC <i>l</i> AND one of conc.HC <i>l</i> + heat [1] step 4 H ₂ O warm/heat [1]	3
7(c)(ii)	N+ CIT OR CIT	1
7(c)(iii)	step 1 electrophilic substitution	1
7(c)(iv)	$C_6H_5NO_2 + 6[H] \rightarrow C_6H_5NH_2 + 2H_2O$	1

© UCLES 2018 Page 12 of 14

Question	Answer				Marks	
8(a)	M1 continuous increase in S1 M2 steep vertical increase in	ture/K from 0–300 K ([1] inuous increase in <i>S</i> after m.p. [1]	2	
8(b)	[1] for each correct tick					
	1	negative ∆S ^e	positive $\Delta \mathcal{S}^{e}$			
	solid dissolving in water		✓			
	water boiling to steam		✓			
8(c)	$\Delta H^{\text{e}} = (2 \times \text{C=O}) + (3 \times \text{H-H}) - (3 \times \text{C-H}) - (\text{C-O}) - (3\text{xO-H})$ $\Delta H^{\text{e}} = (2 \times 805) + (3 \times 436) - (3 \times 410) - (1 \times 360) - (3 \times 460)$ [1] $\Delta H^{\text{e}} = 1610 + 1308 - 1230 - 360 - 1380 = -52$ (kJ mol ⁻¹) [1] ecf correct answer scores [2]					
8(d)(i)	$\Delta S^{e} = 127 + 70 - (214 + 3 \times 131) [1]$ = -410 (J K ⁻¹ mol ⁻¹) [1] ecf correct answer scores [2]					
8(d)(ii)	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ [1] $\Delta G^{\circ} = -131 - (298 \times -0.41) = -8.8(2)$ (kJ mol ⁻¹) [1] correct answer scores [2]					

© UCLES 2018 Page 13 of 14

Question	Answer	
8(d)(iii)	(as temperature increases) feasibility decreases	
8(e)(i)	$2CH_3OH + 3O_2 \Rightarrow 2CO_2 + 4H_2O$ OR $2CH_3OH + 3O_2 \Rightarrow 2CO_2 + 4H^+ + 4OH^-$	
8(e)(ii)	$E_{\text{cell}}^{\text{e}} = 1.23 - 0.02 = 1.21 \text{ V}$	1

© UCLES 2018 Page 14 of 14