\\ \section*{Cambridge International Examinations\\ \section*{Cambridge International Examinations \\ Cambridge International Advanced Subsidiary and Advanced Level}
\square

CENTRE NUMBER

CHEMISTRY
9701/42
Paper 4 A Level Structured Questions
October/November 2017
2 hours
Candidates answer on the Question Paper.
Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
A Data Booklet is provided.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 19 printed pages and 1 blank page.

Answer all the questions in the spaces provided.

1 The compound chlorine dioxide, ClO_{2}, can be prepared by the reaction shown.

$$
\mathrm{NaClO}_{2}+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{ClO}_{2}+\mathrm{NaCl}
$$

(a) Using oxidation numbers, explain why this reaction is a redox reaction.
\qquad
\qquad
\qquad
(b) The central atom in the molecule of ClO_{2} is chlorine.

Draw the 'dot-and-cross' diagram for ClO_{2}. Show outer electrons only.
(c) The reaction between ClO_{2} and F_{2} is shown.

$$
2 \mathrm{ClO}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{ClO}_{2} \mathrm{~F}
$$

The rate of the reaction was measured at various concentrations of the two reactants and the following results were obtained.

experiment	$\left[\mathrm{ClO}_{2}\right] / \mathrm{moldm}^{-3}$	$\left[\mathrm{~F}_{2}\right] / \mathrm{moldm}^{-3}$	initial rate $/ \mathrm{moldm}^{-3} \mathrm{~s}^{-1}$
1	0.010	0.060	2.20×10^{-3}
2	0.025	0.060	to be calculated
3	to be calculated	0.040	7.04×10^{-3}

The rate equation is rate $=k\left[\mathrm{ClO}_{2}\right]\left[\mathrm{F}_{2}\right]$.
(i) What is meant by the term order of reaction with respect to a particular reagent?
\qquad
\qquad
(ii) Use the results of experiment 1 to calculate the rate constant, k, for this reaction. Include the units of k.
rate constant, $k=$ \qquad units
(iii) Use the data in the table to calculate

- the initial rate in experiment 2 ,
initial rate $=$ \qquad $\mathrm{moldm}^{-3} \mathrm{~s}^{-1}$
- $\left[\mathrm{ClO}_{2}\right]$ in experiment 3 .
$\left[\mathrm{ClO}_{2}\right]=$ moldm ${ }^{-3}$
(d) (i) What is meant by the term rate-determining step?
\qquad
\qquad
(ii) The equation for the reaction between ClO_{2} and F_{2} is shown.

$$
\begin{gathered}
2 \mathrm{ClO}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{ClO}_{2} \mathrm{~F} \\
\text { rate }=k\left[\mathrm{ClO}_{2}\right]\left[\mathrm{F}_{2}\right]
\end{gathered}
$$

The mechanism for this reaction has two steps.
Suggest equations for the two steps of this mechanism, stating which of the two steps is the rate-determining step.
step 1 \qquad
step 2 \qquad
rate-determining step $=$ \qquad
(e) By considering the rate equation, explain why the rate increases with increasing temperature.
\qquad
\qquad

2 (a) When water is added to magnesium nitride, $\mathrm{Mg}_{3} \mathrm{~N}_{2}$, the products are a white suspension of $\mathrm{Mg}(\mathrm{OH})_{2}$ and an alkaline gas.
(i) Write an equation for this reaction.
\qquad
(ii) A 2.52 g sample of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ is added to an excess of water.

Calculate the mass of $\mathrm{Mg}(\mathrm{OH})_{2}$ formed.

$$
\begin{equation*}
\text { mass of } \mathrm{Mg}(\mathrm{OH})_{2}= \tag{2}
\end{equation*}
$$

(b) State and explain how the solubility of the Group 2 hydroxides varies down the group.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Magnesium hydroxide is sparingly soluble in water. The concentration of its saturated solution at 298 K is $1.7 \times 10^{-4} \mathrm{moldm}^{-3}$.
(i) Write an expression for the solubility product, K_{sp}, of $\mathrm{Mg}(\mathrm{OH})_{2}$.

$$
K_{\mathrm{sp}}=
$$

(ii) Calculate the value of $K_{\text {sp }}$ for $\mathrm{Mg}(\mathrm{OH})_{2}$ at 298 K and state its units.
\qquad
(d) The temperature at which the Group 2 hydroxides and carbonates start to decompose increases down the group.

Suggest an explanation for this trend in the decomposition temperature of the Group 2 hydroxides.
\qquad
\qquad
\qquad
[Total: 12]

3 Serotonin can be synthesised from the amino acid tryptophan in two steps.

(a) (i) In a buffer solution at pH 5.9, a sample of tryptophan does not move during electrophoresis. Draw the structures of the ions formed by tryptophan at pH 1.0 and pH 5.9 .

(ii) Tryptophan can combine with valine to form a dipeptide.

Use the Data Booklet to draw the structure of this dipeptide.
(b) Complete the following table to show the structures of the products formed and the type of reaction occurring when serotonin reacts with the four reagents in separate reactions.

reagent	structure of product	type of reaction
Na		
excess $\mathrm{Br}_{2}(\mathrm{aq})$		
excess $\mathrm{CH}_{3} \mathrm{COCl}$		
excess $\mathrm{H}_{2} / \mathrm{Pt}$ catalyst		

(c) Serotonin is converted by enzymes in the liver to compound \mathbf{M}.

(i) By reference to the Data Booklet, suggest how the infra-red spectrum of \mathbf{M} would differ from that of serotonin.
\qquad
\qquad
(ii) The proton NMR spectrum of \mathbf{M} dissolved in CDCl_{3} shows eight peaks due to the eight different types of proton present in the molecule.

The proton NMR spectrum of \mathbf{M} dissolved in $\mathrm{D}_{2} \mathrm{O}$ was recorded.
Predict the number of peaks that would be seen in the proton NMR spectrum of M in $D_{2} O$. Explain your answer.
number of peaks \qquad
explanation \qquad
\qquad
(d) Compound \mathbf{M} can be polymerised under certain conditions to form polymer \mathbf{N}, shown.

Polymer \mathbf{N} is biodegradable, unlike polyethene which is not.
Explain why \mathbf{N} is biodegradable.
\qquad
\qquad

4 An electrochemical cell consists of a half-cell containing $\mathrm{V}^{3+}(\mathrm{aq})$ and $\mathrm{V}^{2+}(\mathrm{aq})$ ions and another half-cell containing $\mathrm{VO}_{2}{ }^{+}(\mathrm{aq})$ and $\mathrm{VO}^{2+}(\mathrm{aq})$ ions.
(a) (i) Use data from the Data Booklet to calculate a value for the $E_{\text {cell }}^{\ominus}$.

$$
E_{\text {cell }}^{\ominus}=
$$

(ii) Write the ionic equation for the cell reaction.
\qquad
(iii) Draw a fully labelled diagram of the apparatus you could use to measure the potential of this cell. Include the necessary chemicals.
(b) Use data from the Data Booklet to predict whether a reaction might take place when the following pairs of aqueous solutions are mixed. If a reaction occurs, write an equation for it and calculate the $E_{\text {cell }}^{\ominus}$.

- $\mathrm{V}^{2+}(\mathrm{aq})$ and $\mathrm{Sn}^{4+}(\mathrm{aq})$

Does a reaction occur? \qquad equation \qquad
$E_{\text {cell }}^{\ominus}$

- $\mathrm{VO}^{2+}(\mathrm{aq})$ and $\mathrm{Fe}^{3+}(\mathrm{aq})$

Does a reaction occur? \qquad
equation \qquad
$E_{\text {cell }}^{\ominus}$

5 (a) The arrangement of the anions around a cation is called the geometry of the cation; e.g. in $\left[\mathrm{CuCl}_{4}\right]^{2-}$ the geometry of copper is tetrahedral and the co-ordination number of copper is 4.

The geometry of a cation in an ionic compound can be predicted from the ratio of the ionic radii of the cation and anion involved.

$\frac{\text { cation radius }}{\text { anion radius }}$	geometry of cation
$0.155-0.225$	trigonal planar
$0.225-0.414$	tetrahedral
$0.414-0.732$	octahedral

Use data from the Data Booklet to predict the geometry of, and hence the co-ordination number of, the cation for

- sodium chloride, NaCl ,
geometry of $\mathrm{Na}^{+}=$ \qquad co-ordination number of $\mathrm{Na}^{+}=$ \qquad
- magnesium chloride, MgCl_{2}.
geometry of $\mathrm{Mg}^{2+}=$ \qquad co-ordination number of $\mathrm{Mg}^{2+}=$ \qquad
(b) Magnesium(I) chloride, MgCl , is an unstable compound and readily decomposes as shown.

$$
2 \mathrm{MgCl}(\mathrm{~s}) \rightarrow \mathrm{Mg}(\mathrm{~s})+\mathrm{MgCl}_{2}(\mathrm{~s})
$$

Use the following data to calculate the enthalpy change of this reaction.

$$
\begin{aligned}
& \Delta H_{\mathrm{f}}^{\ominus} \mathrm{MgCl}(\mathrm{~s})=-106 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta H_{\mathrm{f}}^{\oplus} \mathrm{MgCl}_{2}(\mathrm{~s})=-642 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

\qquad kJmol^{-1}
(c) (i) The equation for which ΔH is the lattice energy for MgCl is shown.

$$
\mathrm{Mg}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{MgCl}(\mathrm{~s})
$$

Use the equation, the following data, and relevant data from the Data Booklet to calculate a value for the lattice energy of MgCl . You might find it helpful to construct an energy cycle.

```
electron affinity of Cl(g) = =349\mp@subsup{\textrm{kJ mol}}{}{-1}
enthalpy change of atomisation of Mg(s) = +147 \mp@subsup{\textrm{kJ mol}}{}{-1}
enthalpy change of formation of }\textrm{MgCl}(\textrm{s})=-106\mp@subsup{\textrm{kJ mol}}{}{-1
```

$\qquad$$\mathrm{kJ} \mathrm{mol}^{-1}$[3]
(ii) Suggest how the lattice energies of MgCl_{2} and NaCl will compare to that of MgCl . Explain your answers.
MgCl_{2} and MgCl \qquad
\qquad
NaCl and MgCl
\qquad
(d) Define the term electron affinity.
\qquad
\qquad

6 (a) Define the term transition metal complex.
\qquad
\qquad
(b) Platinum can form the compound $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]\left[\operatorname{PtCl} l_{4}\right]$.

State the co-ordination numbers and the oxidation numbers of the platinum in the two ions of this compound.

	co-ordination number	oxidation number
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{2+}$		
$\left[\mathrm{PtCl}_{4}\right]^{2-}$		

(c) Draw three-dimensional diagrams to show the structures of the two isomers of $\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{2+}$.

(d) Solutions of the compounds $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl} l_{2}$ can be distinguished from each other by a simple chemical test. Assume that any species bonded to the platinum ion does not react in this test.

Complete the table with a test that could be used to positively identify each compound. Give details of expected observations with each compound.

test	observation with $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$	observation with $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl} l_{2}$

(e) In this question you should consider geometrical and optical isomerism.

What type of isomerism is shown by the following complexes? You should answer geometrical, optical, both or neither.
octahedral $\left[\mathrm{Co}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]^{+}$ \qquad
square planar $\left[\mathrm{Ni}(\mathrm{CN})_{2} \mathrm{Cl}_{2}\right]^{2-}$ \qquad tetrahedral $\left[\mathrm{CuBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$
(f) Many enzymes contain transition metal complexes.

Describe, with the aid of a suitably labelled diagram, how an enzyme catalyses the breakdown of a substrate molecule.
\qquad
\qquad
\qquad
\qquad

7 (a) Calcium carbide, CaC_{2}, reacts readily with water, forming ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}$, and a sparingly soluble white ionic compound.
(i) Write an equation for the reaction of CaC_{2} with water.
(ii) Draw a 'dot-and-cross' diagram for the carbide ion, $\mathrm{C}_{2}{ }^{2-}$. Show outer electrons only.
(b) Ethyne is the simplest member of the alkyne homologous series.

Propyne, $\mathrm{C}_{3} \mathrm{H}_{4}$, and butyne, $\mathrm{C}_{4} \mathrm{H}_{6}$, are the next two members of the series.
Deduce the general formula for the alkynes.
\qquad
(c) Ethyne can be polymerised into poly(acetylene), which is a conducting polymer.

poly(acetylene)
(i) Suggest why this polymer conducts electricity.
\qquad
\qquad
(ii) State the empirical formula of poly(acetylene).
\qquad
(iii) By reference to a physical or chemical property, suggest one advantage of a conducting polymer when compared with metals.
(d) Alkynes can react with carbonyl compounds under basic conditions as shown in reaction 1.

(i) The first step of the mechanism of reaction 1 involves the alkyne anion reacting with the carbonyl compound.

Complete the first step of the mechanism and draw the intermediate for this reaction. Include all relevant dipoles, charges and curly arrows.

(ii) Suggest the name of the mechanism in reaction 1.
(iii) An alkyne, \mathbf{Q}, and a carbonyl compound, \mathbf{R}, react together to form compound \mathbf{P} as shown.

P

Use reaction 1 to suggest the structures of \mathbf{Q} and \mathbf{R}.

(e) A series of twelve separate experiments is carried out as shown in the table.

Complete the table by writing in each box a tick (\checkmark) if a reaction occurs, or a cross $(\boldsymbol{x}$) if no reaction occurs.

	$\mathrm{CH}_{3} \mathrm{CHO}$	$\mathrm{HCO}_{2} \mathrm{H}$	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	$\mathrm{HO}_{2} \mathrm{CCO}_{2} \mathrm{H}$
hot, acidified $\mathrm{MnO}_{4}^{-}(\mathrm{aq})$				
alkaline $\mathrm{I}_{2}(\mathrm{aq})$				
warm Tollens' reagent				

[Total: 16]

8 (a) Compound A can be produced from a plant hormone.

(i) Compound \mathbf{A} shows optical and geometrical isomerism.

On the structure of \mathbf{A} above,

- draw a line through the bond(s) that give rise to geometrical isomerism,
- circle all chiral carbon atoms.
(ii) Give the names of four functional groups present in \mathbf{A}.
\qquad
\qquad
(iii) A molecule of \mathbf{A} has 17 carbon atoms.

State the number of carbon atoms that are $\mathrm{sp}, \mathrm{sp}^{2}$ and sp^{3} hybridised in \mathbf{A}.
sp carbons $=$ \qquad sp^{2} carbons $=$ \qquad sp^{3} carbons $=$ \qquad
(iv) When \mathbf{A} is reacted with an excess of hot, concentrated manganate(VII) ions, a mixture of three organic compounds is formed.

$$
\text { A } \rightarrow \underset{\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{7}\right)}{\mathbf{X}} \text { and } \underset{\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}\right)}{\mathbf{Y}} \text { and } \underset{\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\right)}{\mathbf{Z}}
$$

Suggest the structures of \mathbf{Y} and \mathbf{Z}.
\square
\square
(b) A mixture of three different compounds, \mathbf{J}, \mathbf{K} and \mathbf{L}, was analysed by thin layer chromatography using a polar stationary phase and a non-polar mobile phase. The three compounds all have similar molecular masses. The resulting chromatogram is shown.

(i) Identify which spot corresponds to each compound.

compound	spot
J CH ${ }_{3} \mathrm{COCO}_{2} \mathrm{H}$	
K HO	
2	$\mathrm{CCO}_{2} \mathrm{H}$

(ii) Explain your answers to (b)(i).
\qquad
\qquad
(iii) What is meant by the term R_{f} value?
\qquad
\qquad

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Internationa Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

