CHEMISTRY

Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Question	Answer	Marks
1(a)	$\mathrm{Cl}+3$ to +4 (and oxidised)	1
	ClO to -1 (and reduced)	1
1(b)	19 electrons total [1] correct diagram [1]	2
1(c)(i)	the exponent/power to which a concentration is raised in the rate equation	1
1(c)(ii)	$\begin{aligned} & (0.0022=k(0.01) \times(0.06)) \\ & \mathrm{k}=3.7(3.67) \end{aligned}$	1
	$\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$	1
1(c)(iii)	initial rate $=5.50 \times 10^{-3}$	1
	$\left[\mathrm{ClO}_{2}\right]=0.048$	1
1(d)(i)	slowest step (in a multi-step reaction)	1
1(d)(ii)	1 mole of F_{2} and 1 mole ClO_{2} reacting in the rate-determining step	1
	1st step is rate-determining step and a balanced mechanism consistent with overall equation e.g. $\mathrm{ClO}_{2}+\mathrm{F}_{2} \rightarrow \mathrm{ClO}_{2} \mathrm{~F}_{2}$ $\text { or } \mathrm{ClO}_{2}+\mathrm{F}_{2} \rightarrow \mathrm{ClO}_{2} \mathrm{~F}+\mathrm{F}$ $\begin{aligned} & \mathrm{ClO}_{2}+\mathrm{ClO}_{2} \mathrm{~F}_{2} \rightarrow 2 \mathrm{ClO}_{2} \mathrm{~F} \\ & \mathrm{ClO}_{2}+\mathrm{F} \rightarrow \mathrm{ClO}_{2} \mathrm{~F} \end{aligned}$	1
1(e)	k increases (as rate increases)	1

Question	Answer	Marks
2(a)(i)	$\mathrm{Mg}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{3}$	1
2(a)(ii)	moles of $\mathrm{Mg}_{3} \mathrm{~N}_{2}=2.52 / 100.9=0.025$ (0.0249)	1
	$\begin{aligned} & \left(\text { moles of } \mathrm{Mg}(\mathrm{OH})_{2}=0.075(0.0749)\right) \\ & \text { mass of } \mathrm{Mg}(\mathrm{OH})_{2}=(0.075 \times 58.3)=4.37 \mathrm{~g} \text { or } 4.4 \mathrm{~g} \end{aligned}$	1
2(b)	solubility increases (down the group)	1
	$\Delta H_{\text {latt }}$ and $\Delta H_{\text {hyd }}$ both decrease / less exothermic / more endothermic	1
	but $\Delta H_{\text {latt }}$ decreases more (than $\Delta H_{\text {hyd }}$ decreases)	1
	$\Delta H_{\text {sol }}$ becomes more negative / more exothermic / less endothermic	1
2(c)(i)	$K_{\text {sp }}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$	1
2(c)(ii)	$K_{\text {sp }}=\left(1.7 \times 10^{-4}\right) \times\left(2 \times 1.7 \times 10^{-4}\right)^{2}=2.0 \times 10^{-11}\left(1.97 \times 10^{-11}\right)$	1
	$\mathrm{mol}^{3} \mathrm{dm}^{-9}$	1
2(d)	cations become bigger/ionic radius increases	1
	polarisation/distortion of anion / hydroxide ion decreases	1

Question
Question

Question	Answer	Marks
3 3(c)(i)	(spectrum of M) contains a broad peak (for $\mathrm{O}-\mathrm{H}$) at $2500-3000 \mathrm{~cm}^{-1}$ or (spectrum of M) contains peak (for $\mathrm{C}=\mathrm{O}$) at $1640-1750 \mathrm{~cm}^{-1}$ or (spectrum of M) lacks (NH_{2} peak) at $3300-3500 \mathrm{~cm}^{-1}$	$\mathbf{1}$
3(c)(ii)	5 or 6 peaks	$\mathbf{1}$
	$\mathrm{OH} / \mathrm{NH}$ protons exchange with deuterium or $-\mathrm{OH} /-\mathrm{NH}+\mathrm{D}_{2} \mathrm{O} \rightarrow-\mathrm{OD} /-\mathrm{ND}+\mathrm{DHO}$	$\mathbf{1}$
3(d)	ester and hydrolysed	$\mathbf{1}$

Question	Answer	Marks
4(a)(i)	$E_{\text {cell }}^{0}=1.00-(-0.26)=(+) 1.26 \mathrm{~V}$	1
4(a)(ii)	$\mathrm{VO}_{2}^{+}+\mathrm{V}^{2+}+2 \mathrm{H}^{+} \rightarrow \mathrm{VO}^{2+}+\mathrm{V}^{3+}+\mathrm{H}_{2} \mathrm{O}$	1
4(a)(iii)	solutions labelled correctly in one half-cell [1] solutions labelled correctly in both half-cells [1] two graphite or platinum electrodes [1] salt bridge and voltmeter [1]	4

| Question | Answer | Marks |
| :---: | :--- | :---: | :---: |
| $4(\mathrm{~b})$ | $\bullet \mathrm{V}^{2+}(\mathrm{aq})$ and $\mathrm{Sn}^{4+}(\mathrm{aq}):$ | |
| | yes and $E_{\text {cell }}=+0.15-(-0.26)=+0.41 \mathrm{~V}[1]$
 $2 \mathrm{~V}^{2+}+\mathrm{Sn}^{4+} \rightarrow 2 \mathrm{~V}^{3+}+\mathrm{Sn}^{2+}[1]$ | |
| | $\mathrm{VO}^{2+}(\mathrm{aq})$ and $\mathrm{Fe}^{3+}(\mathrm{aq})$
 no reaction $[1]$ | |
| | | |

Question	Answer	Marks
5(a)	$\left(\mathrm{Na}^{+}\right) 0.095 / 0.181=0.525$ and octahedral and co-ordination no. $=6$	1
	$\left(\mathrm{Mg}^{2+}\right) 0.065 / 0.181=0.359$ and tetrahedral and co-ordination no. $=4$	1
5(b)	enthalpy change $=(-642)-(2 \times-106)=-430$	1
5(c)(i)	$\begin{aligned} & -106=147+121+736+(-349)+\text { lattice energy } \\ & \text { lattice energy }=-761 \end{aligned}$	3
5(c)(ii)	MgCl_{2} more exothermic / negative / bigger than MgCl and NaCl more exothermic / negative / bigger than MgCl	1
	(reason for MgCl_{2}) higher charge / lower radius of Mg^{2+} cation	1
	(reason for NaCl) smaller radius of Na^{+}cation	1
5(d)	energy change when 1 mole of atoms / ions each gain an electron or energy change when 1 mole of atoms / ions gain 1 mole of electrons	1
	gaseous	1

Question				Marks
6(a)	central metal atom/ion surrounded by (one or more) ligands			1
6(b)	co-ordination number oxidation number			2
	$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} l_{2}\right]^{2+}$	6	+4	
	$\left[\mathrm{PtCl}_{4}\right]^{2-}$	4	+2	
6(c)				2
6(d)	$\left(\mathrm{HNO}_{3}+\right) \mathrm{AgNO}_{3}$ reagent			1
	$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ with cream ppt. (of AgBr) and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2}$, with white ppt. (of AgCl$)$ observation with both			1
6(e)	octahedral: both			1
	square planar: geometric			1
	tetrahedral: neither			1

Question	Answer	Marks
6(f)	Marks can be awarded from words or diagram. Any three marking points from: - substrate shape is complementary to active site - the substrate binds / bonds / fits into the active site - products are released - lower E_{A} / bonds weakened in substrate	3

Question	Answer	Marks
7(a)(i)	$\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2}$	1
7(a)(ii)		1
7(b)	$\mathrm{C}_{n} \mathrm{H}_{2 n-2}$	1
7(c)(i)	delocalised electrons	1
7(c)(ii)	CH	1
7(c)(iii)	less dense	1

Question
Question

Question	Answer	Marks
8(b)(ii)	The more polar the compound and stronger attractive forces to the (polar) stationary phase ora: less polar compound and weaker attractive forces to the (polar) stationary phase	$\mathbf{1}$
8(b)(iii)	$R_{\mathrm{f}}=$ retardation factor or retention factor or $R_{\mathrm{f}}=$ distance moved by compound from baseline over distance travelled by solvent front	$\mathbf{1}$

