

CHEMISTRY

9701/22 October/November 2017

Paper 2 AS Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	estion Answer	
1(a)	$\begin{array}{ c c }\hline Cl & Cl & Cl \\ Cl & Cl & Cl \\ trigonal planar \\ 120^{\circ} & 100-107^{\circ} \end{array}$ 3 marking points for each box: diagram, name and shape. for each box: all three correct = 2 marks two correct = 1 mark	4
1(b)(i)	SiC1 ₄ simple / molecular AND Van der Waals' / id-id forces / London / dispersion forces / IMFs	1
	NaC <i>l</i> ionic OR giant	1
	bonding (in NaC <i>l</i>) strong <u>er</u> (than forces in SiC <i>l</i> ₄) owtte	1
1(b)(ii)	SiC1 ₄ has more electrons ORA	1
	stronger Van der Waals' / id-id forces / London / dispersion forces / IMFs	1
1(b)(iiii)	ៈប៉ុះ :ប៉ុះនាះប៉ុះ :ប៉ុះ	1

Question	Answer	Marks
2(a)	-444	
2(b)(i)	(higher rate / rate increases) due to higher frequency of successful collisions	1
	more molecules / particles with $E \ge E_a$	1
2(b)(ii)	(percentage decomposition of PCl_5) increases	1
	(forward) reaction is endothermic	1
2(c)	rates of forward and reverse / backward reactions are equal	1
	closed / sealed system/container	1
2(d)(i)	$n_{\text{TOTAL}} = 1.20 + 0.80 + 0.80$ OR 2.80 (mol) OR mole fraction = 1.20/2.80 OR 0.429	1
	$pPCl_5 = 1 \times 10^5 \times (1.20/2.80) = 4.29 \times 10^4 (Pa)$	1
2(d)(ii)	$K_{\rm p} = \frac{\rho {\rm PC} l_3 \times \rho {\rm C} l_2}{\rho {\rm PC} l_5}$	1
2(d)(iii)	1.91×10^4	1
	Pa	1

• •		2017
Question	Answer	Marks
3(a)	(IE) <u>decreases / lower</u> because increasing distance of outer electron(s) from nucleus OR increasing distance of outer / valence shell from nucleus OR increased shielding / screening (from inner shells)	1
	reduces nuclear attraction (for electrons)	1
3(b)(i)	(Melting point) increases / higher because (molecules have an) increasing (number of) electrons	1
	increasing strength / number / amount of IMFs / Van der Waals' / idid / London / dispersion (forces)	1
3(b)(ii)	increased metallic / (cat)ionic radius / size OR decreasing (cat)ion charge-density	1
	decreased attraction (of ions) for delocalised / outer electrons	1
3(c)(i)	reaction 1: HNO ₃ or nitric((V)) acid	1
	reaction 2: water / H ₂ O	1
3(c)(ii)	barium oxide	1
	$2Ba + O_2 \rightarrow 2BaO$	1
3(c)(iii)	NO ₂ /nitrogen dioxide/nitrogen(IV) oxide AND O ₂ /oxygen	1
	(red / yellow-)brown gas OR gas given off that relights glowing splint	1
3(c)(iv)	white ppt / solid / suspension	1
	of BaSO ₄ / barium sulfate OR Mg(OH) ₂ / magnesium hydroxide	1
	BaSO ₄ is insoluble OR Mg(OH) ₂ is insoluble / partially / slightly / sparingly soluble	1

			FUDLISHED	2017
Question			Answer	Marks
4(a)		concentrated H ₂ SO ₄ / H ₃ PO ₄ AND NaBr		5
	1	OR (red) P/Br ₂ OR HBr	substitution	
	2	aqueous / dilute NaOH / KOH	hydrolysis OR substitution	
	3	$\frac{c}{OR} A l_2 O_3 / P_4 O_{10} / pumice / porous pot / SiO_2$	dehydration	
	4	(ethanolic) HBr	addition	
		4 marks for column 1 (one per row)	1 mark for col 2	
4(b)	\ _/ М1	Br ^θ Br ⁻ Br ⁻ Br ⁻ Br ⁻ C ^Φ C ^Φ C ^Φ C ^Φ C ^Φ C ^Φ C ^Φ		3
		ect dipole on ^{δ+} C—Br ^{δ−} AND curly arrow from correct intermediate with + charge	n C—Br bond to Br	
	M3 (curly arrow from lone pair on $:$ OH to C ⁺ of o	arbocation	

Question	Answer	Marks
4(c)(i)	(different molecules) same molecular formula / same numbers of atoms of each (type of) element	1
	different structural formulae / displayed formulae	1
	chain / skeletal functional group position(al) / regioisomerism two types correct = 1 mark, all three correct = 2 marks	2
4(c)(ii)	S _N /nucleophilic substitution	1
	no (stable) (carbo)cation / intermediate is formed	1
	only one alkyl group / fewer alkyl / methyl groups (compared to reaction 2) AND limited (+)I / inductive effect / less electron donating (effect)	1
4(d)(i)	mirror images are super(im)posable OR not chiral / no chirality / no chiral/asymmetric carbon/centre / achiral	1
	one or both C/end of double bond has identical groups / 2 methyl groups / 2 H (atoms)	1
4(d)(ii)	addition	1
	H ₃ C H I I H ₃ C H marking points: • correct number of tetravalent carbon atoms in backbone, with extension bonds • correct groups on backbone carbon atoms and only one repeat unit	2
4(d)(iii)	not/non- biodegradable / harmful combustion products	1

Question	Answer	Marks
4(e)	2-bromo-2-methylpropane	1
	1-bromo-2-methylpropane	1