Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

CHEMISTRY

Paper 3 Advanced Practical Skills 1
February/March 2017
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 10 and 11.
A copy of the Periodic Table is printed on page 12.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

1 The concentration of hydrogen peroxide may be given in moldm³ or as 'volume strength'. You will determine the concentration of hydrogen peroxide in moldm^{-3} and in 'volume strength' by a gas collection method.
Hydrogen peroxide decomposes to form water and oxygen. The reaction is much faster in the presence of a catalyst such as manganese(IV) oxide.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

'Volume strength' is defined as the volume of oxygen in cm^{3} produced from the decomposition of $1.0 \mathrm{~cm}^{3}$ of hydrogen peroxide at room temperature and pressure. For example, $1.0 \mathrm{~cm}^{3}$ of ' 100 volume' hydrogen peroxide will produce $100 \mathrm{~cm}^{3}$ of oxygen.

FA 1 is a solution of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$.
FA 2 is manganese(IV) oxide, MnO_{2}.

(a) Method

Read the whole method before starting any practical work.

The diagram below may help you in setting up your apparatus.

- Fill the tub with water to a depth of about 5 cm .
- Fill the $250 \mathrm{~cm}^{3}$ measuring cylinder completely with water. Hold a piece of paper towel firmly over the top, invert the measuring cylinder and place it in the water in the tub.
- Remove the paper towel and clamp the inverted measuring cylinder so that the open end is in the water just above the base of the tub.
- Rinse the $50 \mathrm{~cm}^{3}$ measuring cylinder with a little FA 1 then use it to transfer $150 \mathrm{~cm}^{3}$ of FA 1 into the reaction flask labelled \mathbf{X}.
- Check that the bung fits tightly in the neck of flask \mathbf{X}, clamp flask \mathbf{X} and place the end of the delivery tube into the inverted $250 \mathrm{~cm}^{3}$ measuring cylinder.
- Remove the bung from the neck of the flask. Tip FA 2 into the hydrogen peroxide and replace the bung immediately. Remove the flask from the clamp and swirl it to mix the contents. Swirl the flask occasionally until no more gas is given off. Replace the flask in the clamp.
- Measure and record the final volume of gas in the measuring cylinder in the space below.

Keep FA 1 for use in Question 2.

Result

(b) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Use the information on page 2 to calculate the 'volume strength' of FA 1.
'volume strength' of FA $1=$ \qquad
(ii) Calculate the number of moles of oxygen collected in the measuring cylinder. [Assume 1 mole of gas occupies $24.0 \mathrm{dm}^{3}$ under these conditions.]

$$
\text { moles of } \mathrm{O}_{2}=
$$

\qquad mol
(iii) Using your answer to (ii) calculate the number of moles of hydrogen peroxide in the volume of FA 1 added to flask \mathbf{X}.
moles of $\mathrm{H}_{2} \mathrm{O}_{2}=$ \qquad mol
(iv) Calculate the concentration of hydrogen peroxide, FA 1, in moldm^{-3}.

$$
\text { concentration of } \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{FA} 1=
$$ moldm^{-3}

(c) (i) A source of error in this experiment is that some oxygen escapes before the bung can be inserted.

Suggest a change to the practical procedure given in (a) to reduce this source of error. You may draw a diagram as part of your answer.
\qquad
\qquad
(ii) The error in reading a $50 \mathrm{~cm}^{3}$ measuring cylinder is $\pm 0.5 \mathrm{~cm}^{3}$.

Calculate the maximum percentage error in the volume of hydrogen peroxide added to flask \mathbf{X} in (a).

$$
\text { maximum percentage error in volume of } \mathrm{H}_{2} \mathrm{O}_{2}=\text {. }
$$

(iii) Explain why the presence of $20 \mathrm{~cm}^{3}$ of air in the $250 \mathrm{~cm}^{3}$ measuring cylinder before the start of the experiment would decrease the accuracy of the results obtained in (a).
\qquad
\qquad
\qquad
(d) If you repeated the method described using half the mass of FA 2, what volume of gas would you expect to collect? Explain your answer.
\qquad
\qquad

2 You will carry out a second experiment to determine the concentration of hydrogen peroxide, FA 1, in moldm^{-3}, by titration with acidified aqueous potassium manganate(VII). The equation for the reaction is given below.

$$
2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+5 \mathrm{O}_{2}(\mathrm{~g})
$$

FA 1 is a solution of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$.
FA 3 is $0.0300 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII), KMnO_{4}.
FA 4 is dilute sulfuric acid.

(a) Method

- Fill the burette with FA 3.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 1 into a conical flask.
- Use the $25 \mathrm{~cm}^{3}$ measuring cylinder to add approximately $20 \mathrm{~cm}^{3}$ of FA 4 to the conical flask.
- Perform a rough titration and record your burette readings in the space below.
\qquad cm^{3}.
- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FA 3 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, obtain a suitable value for the volume of FA 3 to be used in your calculations. Show clearly how you obtained this value.
(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate the number of moles of manganate(VII) ions present in the volume of FA 3 calculated in (b).
moles of $\mathrm{MnO}_{4}^{-}=$ \qquad mol
(ii) Calculate the number of moles of hydrogen peroxide present in $25.0 \mathrm{~cm}^{3}$ of FA 1 .
moles of $\mathrm{H}_{2} \mathrm{O}_{2}=$ \qquad mol
(iii) Using your answer to (ii) calculate the concentration, in moldm${ }^{-3}$, of hydrogen peroxide in FA 1.

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs. No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.
(a) FA 5, FA 6 and FA 7 are solutions, some of which contain ions that are listed on pages 10 and 11 .

test		observations		
		FA 5	FA 6	FA 7
(i) To a 0.5 cm depth of solution in a boiling tube add aqueous sodium hydroxide, then				
warm gently.				
	Allow to cool, add a piece of aluminium foil and warm again.			
(ii) To a 1 cm depth of solution in a test-tube add two or three drops of acidified aqueous potassium manganate(VII). (Do not use FA 3.)				
If no reaction occurs, pour the mixture into a boiling tube and warm gently.				
(iii) To a 1 cm depth of solution in a test-tube add a 2 cm depth of '10 volume' hydrogen peroxide and leave to stand. (Do not use FA 1.)				
(iv) To a 1 cm depth of solution in a test-tube add a 1 cm depth of dilute hydrochloric acid, then				
	add a 1 cm depth of aqueous barium chloride or aqueous barium nitrate.			

(b) (i) Identify as many ions present in FA 5, FA 6 and FA 7 as possible from your observations. If an ion cannot be identified from the tests, write 'unknown' in the space.

	cation(s)	anion(s)
FA 5		
FA 6		
FA 7		

(ii) Describe another test you could carry out to confirm the identity of a cation you have identified in (i). Record the reagent(s) and expected observation(s) in the space below. Do not carry out this test.
(iii) Write an ionic equation for the reaction that would occur in (ii). Include state symbols.
\qquad

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\left.\mathrm{Ca}^{2+}(\mathrm{aq})\right]$	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
$\begin{aligned} & \text { iron(II), } \\ & \mathrm{Fe}^{2+}(\mathrm{aq}) \end{aligned}$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-(\mathrm{aq})}$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements

\therefore ○	
	毋 ¢ ¢
¢ O Co	
	®完高
	® 은
	\＆ᄃ
$\text { in } \begin{gathered} \sigma \\ \hline \end{gathered}$	8

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cie．org．uk after the live examination series．

