Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

CHEMISTRY

Paper 3 Advanced Practical Skills 1

Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 10 and 11.
A copy of the Periodic Table is printed on page 12.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

This document consists of $\mathbf{1 1}$ printed pages and $\mathbf{1}$ blank page.

1 Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, can be oxidised to give oxygen, O_{2}. This reaction happens rapidly in the presence of acidified potassium manganate(VII), KMnO_{4}.

$$
2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+5 \mathrm{O}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

You will determine the concentration of a solution of hydrogen peroxide. You will first dilute the solution and then carry out a titration using acidified potassium manganate(VII), KMnO_{4}.

FA 1 is aqueous hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$.
FA 2 is $0.0200 \mathrm{moldm}^{-3}$ potassium manganate(VII), KMnO_{4}.
FA 3 is 1.0 moldm $^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

(a) Method

Dilution

- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 1 into the $250 \mathrm{~cm}^{3}$ volumetric flask.
- Add distilled water to make $250 \mathrm{~cm}^{3}$ of solution and shake the flask thoroughly.
- Label this diluted solution of hydrogen peroxide FA 4.

Titration

- Fill the burette with FA 2.
- Rinse the pipette thoroughly with distilled water and then with a little FA 4.
- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 4 into a conical flask.
- Use the measuring cylinder to add $25 \mathrm{~cm}^{3}$ of FA 3 to the conical flask.
- Perform a rough titration and record your burette readings in the space below.
\qquad cm^{3}.
- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of FA 2 added in each accurate titration.

Keep FA 3 and FA 4 for use in Question 2.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, obtain a suitable value for the volume of FA 2 to be used in your calculations. Show clearly how you obtained this value.
$25.0 \mathrm{~cm}^{3}$ of FA 4 required cm^{3} of FA 2. [1]

(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate the number of moles of potassium manganate(VII) present in the volume of FA 2 calculated in (b).

$$
\text { moles of } \mathrm{KMnO}_{4}=
$$

\qquad mol
(ii) Use your answer to (i) and the equation at the top of page 2 to calculate the number of moles of hydrogen peroxide present in $25.0 \mathrm{~cm}^{3}$ of FA 4.
moles of $\mathrm{H}_{2} \mathrm{O}_{2}=$
mol
(iii) Calculate the concentration, in mol dm ${ }^{-3}$, of $\mathrm{H}_{2} \mathrm{O}_{2}$ in FA 4.
concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in FA $4=$ \qquad moldm^{-3}
(iv) Calculate the concentration, in moldm ${ }^{-3}$, of $\mathrm{H}_{2} \mathrm{O}_{2}$ in FA 1.
concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in FA $1=$ \qquad moldm^{-3}

2 In Question 1, hydrogen peroxide was oxidised to form oxygen. Hydrogen peroxide can also be reduced to form water. This occurs, for example, when hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, reacts with iodide ions, $\mathrm{I}^{-}(\mathrm{aq})$, to form iodine, $\mathrm{I}_{2}(\mathrm{aq})$.

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

The rate of this reaction can be measured by adding acidified hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, to a mixture of iodide ions, I^{-}, thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, and starch indicator. As the iodine is produced, it reacts immediately with the thiosulfate ions and is reduced back to iodide ions.

$$
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})
$$

When all the thiosulfate has reacted, the iodine then turns the starch indicator blue-black. The rate of reaction may be determined by timing how long it takes the reaction mixture to turn blue-black.

In this experiment you will measure two reaction times and use one of these to calculate the concentration of the thiosulfate ions in FA 6.

FA 3 is 1.0 moldm ${ }^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
FA 4 is the diluted hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, you prepared in $\mathbf{1}(\mathrm{a})$.
FA 5 is $1.0 \mathrm{moldm}^{-3}$ potassium iodide, KI .
FA 6 is aqueous sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
starch indicator
Read through the instructions carefully before starting any practical work.

(a) Method

- Use the measuring cylinder to transfer $20 \mathrm{~cm}^{3}$ of FA 3 into the $100 \mathrm{~cm}^{3}$ beaker.
- Use the measuring cylinder to add $10 \mathrm{~cm}^{3}$ of FA 4 into the $100 \mathrm{~cm}^{3}$ beaker.
- Rinse the measuring cylinder with distilled water and drain.
- Use the measuring cylinder to transfer $20 \mathrm{~cm}^{3}$ of FA 5 into the $250 \mathrm{~cm}^{3}$ beaker.
- Use the measuring cylinder to transfer $20 \mathrm{~cm}^{3}$ of FA 6 into the $250 \mathrm{~cm}^{3}$ beaker.
- Use the measuring cylinder to transfer $10 \mathrm{~cm}^{3}$ of starch indicator into the $250 \mathrm{~cm}^{3}$ beaker.
- Add the contents of the $100 \mathrm{~cm}^{3}$ beaker to the $250 \mathrm{~cm}^{3}$ beaker and start timing immediately.
- Stir the mixture once and place the beaker on a white tile.
- Stop timing as soon as the solution turns blue-black.
- Record this reaction time to the nearest second.
- Rinse both beakers and drain.

Keep all FA solutions and starch indicator for use in (c).
reaction time =

(b) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) The expression for the rate of reaction is shown.

$$
\text { rate }=\frac{\text { concentration of iodine at the reaction time }}{\text { reaction time }}
$$

The concentration of iodine at the reaction time is the concentration of iodine that would have been present at the time the blue-black colour appeared if no thiosulfate ions had been added.

In this experiment, you should assume the rate $=2.61 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$.
Use this value for the rate to calculate the concentration of iodine that would have been present at the reaction time if no thiosulfate ions had been added.
concentration of $I_{2}=$ \qquad moldm^{-3}
(ii) Use your answer to (i) and the total reaction volume, to calculate the number of moles of iodine that would have been present at the reaction time if no thiosulfate ions had been added.
(If you were unable to calculate an answer to (i), you should use the value of $1.32 \times 10^{-3} \mathrm{moldm}^{-3}$. This may not be the correct value.)

$$
\text { moles of } I_{2}=
$$

\qquad mol
(iii) Calculate the number of moles of thiosulfate ions that reacted with the moles of I_{2}, calculated in (ii).

$$
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})
$$

moles of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=$ \qquad mol
(iv) Use your answer to (iii) to calculate the concentration of thiosulfate ions in FA 6.
(c) Repeat the experiment in (a) using the following quantities of each reagent.

- add to the $100 \mathrm{~cm}^{3}$ beaker
$20 \mathrm{~cm}^{3}$ of FA 3
$10 \mathrm{~cm}^{3}$ of FA 4
- add to the $250 \mathrm{~cm}^{3}$ beaker
$20 \mathrm{~cm}^{3}$ of FA 5
$10 \mathrm{~cm}^{3}$ of FA 6
$10 \mathrm{~cm}^{3}$ of starch indicator
$10 \mathrm{~cm}^{3}$ of distilled water
- Add the contents of the $100 \mathrm{~cm}^{3}$ beaker to the $250 \mathrm{~cm}^{3}$ beaker and start timing immediately.
- Stir the mixture once and place the beaker on a white tile.
- Stop timing as soon as the solution turns blue-black.
- Record this reaction time to the nearest second.
reaction time =
(d) (i) Explain the relationship between the value of the reaction time in (a) and the value of the reaction time in (c).
\qquad
\qquad
\qquad
(ii) A student states that the error in the total volume of the reaction mixture in (a) is the same as the error in the total volume of the reaction mixture in (c).

State whether or not you agree with the student and explain your answer.
\qquad
\qquad
\qquad
\qquad

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.
(a) FA 7, FA 8, FA 9 and FA 10 are solutions that each contain a metal cation from those listed in the Qualitative Analysis Notes on page 10.
Carry out tests using reagents that will allow you to identify which metal ions are present.
Draw a single table to record your observations.
Complete the table below with your conclusions.

solution	FA 7	FA 8	FA 9	FA 10
metal ion present				

(b) Carry out the following test and record your observations.

test	observations
To a 1 cm depth of FA 10 in a boiling tube add a 0.5 cm depth of 20 'vol' hydrogen peroxide, then add one drop of aqueous sodium hydroxide.	

(c) FA 11 is a solid that contains one anion from those listed in the Qualitative Analysis Notes on page 11.

Place all of FA 11 into a boiling tube and add a 3 cm depth of distilled water. Stir until all the solid has dissolved.
(i) Carry out the following test and record your observations.

test	observations
To a 1 cm depth of the solution of FA 11 in a test-tube add dilute sulfuric acid.	

(ii) Use your observations from (i) to identify the anion in FA 11.

The anion is \qquad . .
(iii) Use the remaining solution of FA 11 in the boiling tube to carry out a further test to support your identification of the anion.
Record details of this test.

BLANK PAGE

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{A} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\mathrm{Ca}^{2+}(\mathrm{aq})$]	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{r^{3+}(\mathrm{aq})} \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}-(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ ((partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements

	${ }^{\circ} \mathrm{D}$
	®u
	$\text { ब } \frac{v}{0}$
	む
ढ昆	
	๙ コ
	－ᄃ 言㕸
$\text { in } \begin{gathered} \sigma \\ \hline \end{gathered}$	

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cie．org．uk after the live examination series．

