MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

(b)	not (i)	Zn o to er	GCE AS/A LEVEL – October/November 2012 Zn(OH) ₂ ZnO r other compounds of Zn	9701	21	
(b)	not (i)	Zn o to er			(_
	.,				(any 2)	[2]
	/:: \	 (i) to ensure all of the water of crystallisation had been driven off o to be at constant mass 		ff or	(1)	
	(11)	mas	s of ZnSO ₄ = 76.34 – 74.25 = 2.09 g		(1)	
		<i>M</i> _r Z	nSO ₄ = 65.4 + 32.1 + (4 × 16.0) = 161.5			
		allow	allow use of Zn = 65 and/or S = 32 to give values between 161 and 161.5 $n(ZnSO_4) = \frac{2.09}{161.5} = 0.01294 = 1.29 \times 10^{-2}$			
		<i>n</i> (Zn				
		$ZnSO_4 = 161$ gives 1.30×10^{-2}			(1)	
((iii)	mas	s of H ₂ O driven off = 77.97 – 76.34 = 1.63 g		(1)	
		$n(H_2O) = \frac{1.63}{18} = 0.0905 = 9.1 \times 10^{-2}$		(1)		
((iv) 1.29 × 10 ^{−2} m		\times 10 ⁻² mol ZnSO ₄ are combined with 9.1 \times 10 ⁻² mol H ₂ (C		
		1 mc	ol ZnSO ₄ is combined with $\frac{9.1 \times 10^{-2}}{1.29 \times 10^{-2}}$			
		= 7.0	$054 \equiv 7 \mod H_2O$			
		ansv allov	ver must be expressed as a whole number v ecf on candidate's answers to (b)(ii) and (b)(iii)		(1)	[7]
(c)	(i)	<i>n</i> (Zn) = n (CH ₃ CO ₂) ₂ Zn.2H ₂ O		(1)	
		<i>n</i> (Zn	$) = \frac{0.015}{65.4} = 2.290 \times 10^{-4}$			
		= 2.2	29 × 10 ⁻⁴		(1)	
		mass of crystals = 2.29 × 10 ⁻⁴ × 219.4 = 0.0502655 g = 0.05 g = 50 mg		(1)		
((ii) concentration of $(CH_3CO_2)_2Zn.2H_2O = \frac{2.29 \times 10^{-4}}{0.005} = 4.58 \times 10^{-2} \text{ mol dm}^{-3}$					
			(1)			
		allow	v correct answers if Zn = 65 is used			[4]
					[Tota	l: 13]

	Ра	ge 3	\$		Mark Scheme EL – October/November		llabus 9701	Paper 21	,
2	(a)	(i)	ther	mal stability decrease				(1)	
		(ii)	the I H—2 sma	X bond becomes lon ller orbital overlap oc	er from the nucleus of X or ger or			(1) (1)	[3]
	(b)	<i>K</i> c =	= [[H ₂	$\frac{\mathrm{HI}^2}{\mathrm{I}\times[\mathrm{I}_2]}$					(1)
		no	units	– must be clearly sta	ated			(1)	[2]
	(c)	(i)		hange as no units or				(1)	
					moles each side of equilib	rium		(1)	
		(ii)	K _c ir	librium moves to RH creases with decrea ard reaction is exoth	sing temperature or			(1)	
			reve	rse reaction is endot	thermic			(1)	[4]
	(d)	equ	al mo uil. mo uil. co		$H_{2}(g) + 0.02 + 0.0$	$I_{2}(g) = 0.02 \\ (0.02 - y) \\ (0.02 - y) \\ 1$	2HI(g) 0 2y <u>2y</u> 1	(1)	
		K _c :	= <mark> </mark> [H ₂	$\frac{\mathrm{HI}^2}{\mathrm{I} \times [\mathrm{I}_2]} = \frac{(2\mathrm{y})^2}{(0.02 - \mathrm{y})^2}$	= 59			(1)	
		(0.0	<u>2y</u>)2 – y	= √59 = 77)					
		2y :	= (7.7	× 0.02) – 7.7y					
		9.7	y = 0.	154					
		give	es y =	$\frac{0.154}{9.7} = 0.0159 = 0.0159$	016			(1)	
		at e	equili	brium					
				$2 \times 0.016 = 0.032$ and $0.016 = 0.032$ and $0.016 = 0.016$				(1)	

 $n(H_2) = n(I_2) = (0.02 - 0.016) = 0.004$ (1)

allow ecf where possible

[4]

	Pa	ge 4		Mark Scheme	Syllabus	Paper	
			GCE	AS/A LEVEL – October/November 2012	9701	21	
3	(a)	(i)	$\begin{split} N_2(g) + 3H_2(g) &\rightleftharpoons 2NH_3(g) \text{ or } \\ N_2(g) + 3H_2(g) &\to 2NH_3(g) \end{split}$				
			state symbols	required		(1)	
		(ii)	pressure	between 60 and 250 atm or between 60 × 10 ⁵ Pa and 250 × 10 ⁵ Pa		(1)	
			temperature	between 300 and 550 °C		(1)	
			catalyst	iron / iron oxide		(1)	
		(iii)	manufacture of HNO_3 / as a cleaning agent / refrigerant / fertiliser / man fertilisers / explosives / to remove SO_2 from combustion products of hydrocarb				
	(b)	(i)	NH₄C <i>l</i> and Ca both formula			(1)	
		(ii)	$2NH_4Cl + Ca(0)$ $NH_4^+ + OH^- \rightarrow 0$	$OH)_2 \rightarrow CaCl_2 + 2NH_3 + 2H_2O \text{ or}$ $H_3 + H_2O$			
			correct produc correctly balar			(1) (1)	
		(iii)	CaO			(1)	
				d / it is basic / it does not react with NH ₃ or O_{10} and H ₂ SO ₄ are acidic / react with NH ₃		(1)	[5]
	((c)	H-N: + H-N: + H	$-H^{+} \longrightarrow \begin{bmatrix} H \\ H - N \rightarrow H \\ H \end{bmatrix}^{+}$			

correct displayed eqn.,	
with positive charge clearly shown	(1)
lone pair on NH ₃	(1)
co-ordinate / dative bond clearly shown	(1) [3]

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9701	21

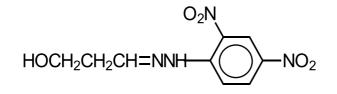
4 (a) (i)

reaction	organic compound	reagent	structural formulae of organic products
А	(CH ₃) ₃ COH	Cr ₂ O ₇ ^{2–} /H ⁺ heat under reflux	no reaction
В	CH ₃ CH ₂ CHO	Fehling's reagent warm	CH₃CH₂CO₂H or CH₃CH₂CO2 [−]
С	HCO ₂ CH(CH ₃) ₂	NaOH(aq) warm	HCO₂Na or HCO₂ [−] (CH₃)₂CHOH
D	CH ₂ =CHCHO	NaBH ₄	CH ₂ =CHCH ₂ OH
Е	(CH₃)₃COH	NaBH ₄	no reaction
F	CH ₃ CH ₂ COCH ₃	MnO₄ [−] /H⁺ heat under reflux	no reaction

each correct answer gets (1)

(7 × 1)

(1 + 1 + 1) [10]

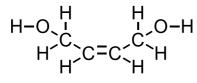

(ii)

reaction	colour at the beginning of the reaction	colour at the end of the reaction
В	blue	brick red

each correct answer gets 1

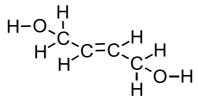
(b) (i)

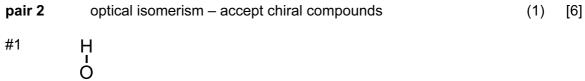
(ii) red or orange

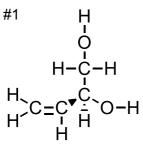

(1)

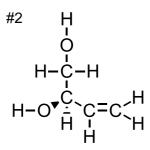
(1) [2]

[Total: 12]


	Page			Mark Scheme	Syllabus	Paper	•
				GCE AS/A LEVEL – October/November 2012	9701	21	
5	5 (a) (i		carboxylic a	oxylic acid or alcohol present or oxylic acid and alcohol present acid or carboxyl or hydroxyl		(1)	
		(ii)		oxylic acid not present or alcohol present		(1)	
		(iii)	alke	ne or >C=C< present		(1)	[3]


(b) (i)




each correct structure gets (1) (4×1)

(ii) pair 1	geometrical or <i>cis-trans</i> or <i>E</i> / <i>Z</i> isomerism	(1)

[Total: 9]