UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	. 490 -	•	mark continue reactions release	- J a		
			GCE AS/A LEVEL – May/June 2012	9701	22	
1	(a) (i)	silico	on/Si or phosphorus/P		(1)	
	(ii)	sodi	um or sulfur name required		(1)	
	(iii)	chlo	e solid formed/white fumes seen rine gas decolourised ninium glows or burns	an	y two (2)	
	(iv)	2A <i>l</i> (s	$(s) + 3Cl_2(g) \rightarrow Al_2Cl_6(s)$ or $(s) + 3Cl_2(g) \rightarrow 2AlCl_3(s)$ ation a symbols		(1) (1)	
	(v)	vale activ	r shell of electrons is full/has a complete octet or nce shell of electrons is full/has a complete octet or ration energy is too high or sation energy is too high		(1)	[7]

Syllabus

Paper

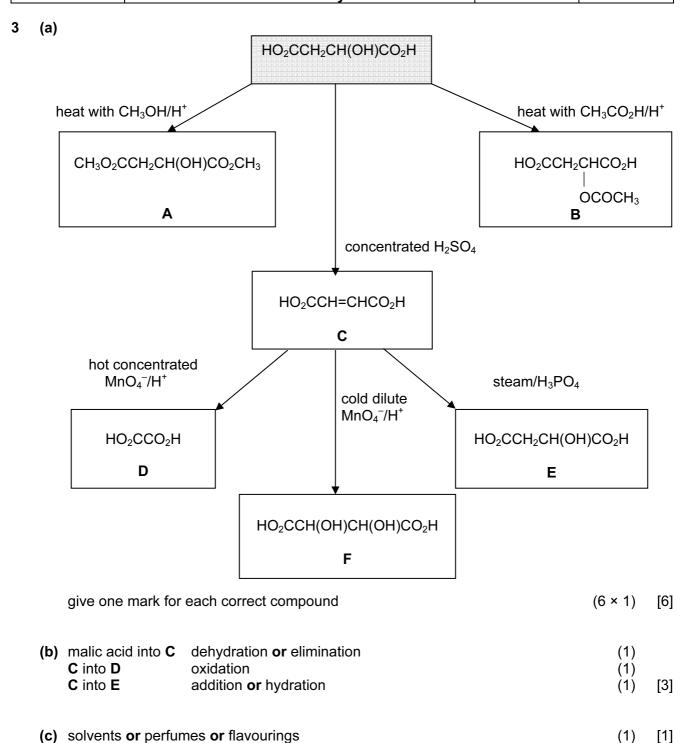
Mark Scheme: Teachers' version

(b) (i)

Page 2

	element	Does the chloride dissolve or react?	approximate pH of the resulting solution	
	Na	dissolve	7	
	Al	react	1 to 4	
	Si	react	1 to 4	
	one mark for each	n correct answer	(6 × 1)	
(ii)	hydrolysis		(1)	[7]
(c) (i) (ii)	around the S atom there are two lone pairs		both (1)	

because two lone pairs repel more than one lone pair **or** lone pair-lone pair repulsions are stronger than lone pair-bond pair repulsions

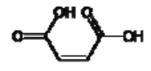

(1) [2]

[Total: 16]

	Page 3		ge 3 Mark Scheme: Teachers' version		Paper	•
		-	GCE AS/A LEVEL – May/June 2012	9701	22	
2	(a)		$(1) + {}^{3}/_{2}O_{2}(g) \rightarrow CO_{2}(g) + 2H_{2}O(l)$ alpy change/heat change/heat evolved when		(1)	
		one mole	e of CH₃OH etely burned or		(1)	
		•	d in an excess of air/oxygen		(1)	[3]
	(b)		$_{0} = -283 + 2(-286) - (-726)$ $_{0} = -283 + 2(-286) - (-726)$		(1) (1)	
		correct s	ign		(1)	[3]
	(c)	pressur e increase			(1)	
		•	asing frequency of collisions or			
		•	asing concentration of reactants		(1)	
		tempera increase			(1)	
			more molecules have energy >E _a		(1)	
		catalyst increase			(1)	
			ding an alternative route of lower E_a		(1)	[6]

[Total: 12]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	22



Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	22

(d) (i)

correct compound (malic acid) shown as a pair of enantiomers in 3D (1) chiral carbon (*) atom correctly identified (1) structure **fully** displayed (1)

(ii) POL

give one for each correct skeletal formula

(1 + 1)

correct cis (or Z) and trans (or E) labels

(1) [6]

(e) C:H:O = $\frac{37.5}{12}$: $\frac{4.17}{1}$: $\frac{58.3}{16}$

= 6:8:7

empirical formula is $C_6H_8O_7$ (1) [3]

[Total: 19]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	22

4 (a)

reagent R₂CHOH RCHO RCO₂H RCO₂R' RCOR'

NaHCO₃
$$\checkmark$$
 Na \checkmark \checkmark \checkmark $Cr_2O_7^{2-}/H^+$ \checkmark \checkmark

give one mark for each correct tick

$$(5 \times 1)$$
 [5]

(1)

(b) (i) alcohol or ROH not hydroxyl or phenol or –OH

(ii)
$$n(H_2) = \frac{80}{24000} = 3.3 \times 10^{-3} \text{ mol}$$

$$n(H \text{ atoms}) = 2 \times 3.3 \times 10^{-3} \text{ mol} = 6.6 \times 10^{-3} \text{ mol}$$
 (1)

(iii)
$$n(G) = \frac{0.30}{90} = 3.3 \times 10^{-3} \text{ mol}$$

$$n(G) : n(H \text{ atoms}) = 3.3 \times 10^{-3} : 6.6 \times 10^{-3}$$

= 1 : 2
so each –OH group produces one H atom

(c) (i)

$$\stackrel{\mathsf{R}}{\triangleright} \overset{\mathsf{C}}{\triangleright} \circ \qquad \overset{\mathsf{C}}{\triangleright} \circ \qquad \overset{\mathsf{O}}{\triangleright} \circ \qquad \qquad \text{and 'ketone'}$$

(ii) **G** is HOCH₂COCH₂OH as the minimum allow the *gem* diol CH₃COCH(OH)₂

(1) [2]

(d) (i) H is HO₂CCOCO₂H as the minimum

(1)

(ii) J is HOCH₂CH(OH)CH₂OH as the minimum

(1) [2]