MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2011	Syllabus 9701	Paper		
				· · · · · ·	9701	21	
1	(a)			paraffins ocarbon		(1)	[1]
	(b)	2 C	; ₁₄ H ₃₀	+ 43 $O_2 \rightarrow$ 28 CO_2 + 30 H_2O or			
		C ₁₄	H ₃₀ +	${}^{43}I_2O_2 \rightarrow 14 \text{ CO}_2 + 15 \text{ H}_2O$		(1)	[1]
	(c)	(i)	mas	s of C ₁₄ H ₃₀ burnt			
				<u>5 x 10.8</u> = 88.506 = 88.5 t 000		(1)	
		(ii)	mas	s of CO ₂ produced			
			<i>M</i> r o	f C ₁₄ H ₃₀ = (14 x 12 + 30 x 1) = 198		(1)	
			2 x ′	198 t of $C_{14}H_{30} \rightarrow 28 \text{ x } 44 \text{ t of } CO_2$			
			88.5	$f_{14}H_{30} \rightarrow \frac{28 \times 44 \times 88.5}{2 \times 198}$		(1)	
			= 27	75.3 t of CO ₂		(1)	
				w 275.4 t if candidate has used 88.506 w ecf on wrong value for M_r of $C_{14}H_{30}$			[4]
	(d)	n =	<u>PV</u> =	$= \frac{6 \times 10^5 \times 710 \times 10^{-6}}{8.31 \times 293}$		(1)	
			0.17			(1)	[2]
	(e)	P =	• <u>nRT</u> V	$T = \frac{0.175 \times 8.31 \times 278}{710 \times 10^{-6}}$		(1)	
		=	5694	110.5634 Pa = 5.7 x 10⁵		(1)	
		allo	w ect	f on (d)			[2]
						[Total:	10]

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	,
			GCE AS/A LEVEL – May/June 2011	9701	21	
2	(a) (oreak large hydrocarbons into smaller hydrocarbons or oreak down large hydrocarbons		(1)	
			smaller hydrocarbons are more useful or smaller hydrocarbons are more in demand		(1)	
	(i	•	using high temperatures/thermal cracking or using catalysts/catalytic cracking		(1)	
	(ii		$\begin{array}{l} C_{14}H_{30} \rightarrow C_{7}H_{16} + C_{7}H_{14} \ \textbf{or} \\ C_{14}H_{30} \rightarrow C_{7}H_{16} + C_{2}H_{4} + C_{5}H_{10} \ \textbf{or} \\ C_{14}H_{30} \rightarrow C_{7}H_{16} + C_{3}H_{6} + C_{4}H_{8} \ \textbf{or} \\ C_{14}H_{30} \rightarrow C_{7}H_{16} + 2C_{2}H_{4} + C_{3}H_{6} \end{array}$		(1)	[4]
	(b) ∈	ethan	nol has hydrogen bonding, ethanethiol does not		(1)	[1]
	(c) (2 c	$C_2H_5SH + {}^9I_2O_2 \rightarrow 2CO_2 + SO_2 + 3H_2O \text{ or}$ $2C_2H_5SH + 9O_2 \rightarrow 4CO_2 + 2SO_2 + 6H_2O$ correct products correct equation which is balanced		(1) (1)	
	(i	é e	for CO 2 enhanced greenhouse effect global warming		(1) (1)	
		fo d d d	f or SO₂ formation of acid rain damage to stonework of buildings/ dissolving of aluminium ions into rivers/ damage to watercourses or forests/		(1)	
			aquatic life destroyed/ corrosion of metals		(1)	[6]
	(d) h	nelp d	detect leaks of gas		(1)	[1]
	, r	temperature of 450°C pressure of 1 – 2 atm V_2O_5 /vanadium(V) oxide/vanadium pentoxide catalyst			(1) (1) (1) [Total:	[3] : 15]
					[Total:	1

Page 4				Teachers' version	Syllabus	Paper	,
			GCE AS/A LEVEL – May/June 2011		9701	21	
3	U(aq) CaC <i>l</i> ₂		dilute HC≀	Ca(s) roas		(s) CaO	
L			1	H ₂ O(I)	H ₂ O(I)	dilute HNO ₃	
	Na₂C		O ₃ (aq)	X(s) Ca(OH)₂		(aq) ∣ NO₃) ₂	
		,		dilute H ₂ SO ₄	reaction 1		
	Y Ca	(s) CO ₃		Z(s) CaSO4			
(a	I) U V W X Y		$CaC l_2$ CaO Ca(NO ₃) ₂ Ca(OH) ₂ CaCO ₃			(1) (1) (1) (1) (1)	[5]
(b			ly in a test-tube or a bo v 'heat gently' or 'reflux			(1)	[1]
(c	, , ,	Ca to L Ca + 2	$J HCl \rightarrow CaCl_2 + H_2$			(1)	
		V to W CaO +	$2HNO_3 \rightarrow Ca(NO_3)_2$ +	- H ₂ O		(1)	
	U to Y CaC l_2 + Na ₂ CO ₃ \rightarrow CaCO ₃ + 2Na			2NaC1		(1)	
	(ii) 2	2Ca(N	$(O_3)_2 \rightarrow 2CaO + 4NO_2 + CaO + CaO_2 + CaO_2$	+ O ₂		(1)	[4]

(d) $Na_2SO_4(aq)/K_2SO_4(aq)$ or formula of any soluble sulfate (1) [1]

Page	5		llabus	Paper	
		GCE AS/A LEVEL – May/June 2011	9701	21	
(e) (i)	colo Ca d	o X urless gas formed/fizzing/effervescence/bubbles or lissolves or e precipitate/suspension formed		(1)	
(ii)	stea surfa	ngly exothermic/vigorous reaction or m formed/steamy fumes or ace crumbles ot allow white ppt.		(1)	[2]
				[Total:	13]
l (a) (i)		eophilic addition words are necessary		(1)	
(ii)	HCN	N and H₂SO₄ or I plus CN [−] ot allow HCN on its own		(1)	
(iii)	corre	ect δ + and δ -, i.e. $\delta + \delta^{-}$		(1)	[3]
(b) (i)	corre	ect organic product			
	(CH ₃	$_{3})_{2}C$ NH NH NO ₂			
		bond must be clearly shown formed/ equation balanced		(1) (1)	[2]
(ii)		H ₃ C,			

н₃с с=__N___о___н н₃с

(1) [1]

[Total: 6]

	Page	6	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9701	21	
5	(a) C	aC ₂ +	$2H_2O \rightarrow Ca(OH)_2 + C_2H_2$		(1)	[1]
	(b) (i	i) step step	addition		(1) (1) (1)	
	(ii	cond	ent NaOH/KOH/OH ⁻ ditions in alcohol/ethanol allow conditions mark if reagent is correct		(1) (1)	[5]
	(c) (i		CH ₃ CHO (as minimum) CH ₃ CO ₂ H (as minimum)		(1) (1)	
	(ii	<i>,</i> ,	3 is addition 4 is oxidation/redox		(1) (1)	[4]
	(d) (i	C ₂ H equa H ₂ C corre	abustion $_{2}(g) + {}^{5}/_{2}O_{2}(g) \rightarrow 2CO_{2}(g) + H_{2}O(I)$ or ation must be for the combustion of one mole of C ₂ H ₂ 0 must be shown as liquid ect state symbols in this equation		(1) (1)	
		2C(s	hation s) + $H_2(g) \rightarrow C_2H_2(g)$ hark for state symbols here		(1)	
	(ii	i) let Z	Z be ΔH^{e}_{f} of C ₂ H ₂ C ₂ H ₂ + $\frac{5}{2}O_{2} \rightarrow 2CO_{2} + H_{2}O$			
					(1)	
		valu sign			(1) (1)	[6]
					[Total:	16]