UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	22

1 (a) the actual number of atoms of each element present (1)

in one molecule of a compound (1)

[2]

(b)
$$C_XH_Y + \left(x + \frac{y}{4}\right)O_2 \longrightarrow xCO_2 + \frac{y}{2}H_2O$$

 $xCO_2(1)$

$$\frac{y}{2} H_2 O(1)$$
 [2]

- (c) (i) oxygen/ $O_2(1)$
 - (ii) carbon dioxide/CO₂(1)
 - (iii) 10 cm³ (1)

(iv)
$$20 \text{ cm}^3(1)$$
 [4]

(d)
$$C_X H_Y + \left(x + \frac{y}{4}\right) O_2 \longrightarrow x C O_2 + \frac{y}{2} H_2 O$$

 10 cm^3 20 cm^3 10 cm^3

1 mol of C_xH_y gives 1 mol of CO_2

whence x = 1 (1)

1 mol of C_xH_y reacts with 2 mol of O₂

whence
$$\left(x + \frac{y}{4}\right) = 2$$

and y = 4(1)

molecular formula is CH₄ (1) [3]

[Total: 11]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	22

2 (a)
$$N_2 + 3H_2 = 2NH_3(1)$$
 [1]

(b) temperature between 300 and 550°C (1)

correct explanation of effect of temperature on rate of formation of NH_3 or on position of equilibrium (1)

catalyst of iron or iron oxide (1)

to speed up reaction **or** to reduce $E_a(1)$

[4]

(c) manufacture of HNO₃

or explosives

or nylon

or as a cleaning agent

or as a refrigerant (1)

[1]

(d) fertiliser in rivers causes excessive growth of aquatic plants/algae (1)

when plants and algae die O2 is used up/fish or aquatic life die (1)

[2]

(e) (i) CO by incomplete combustion of the hydrocarbon fuel (1)

NO by reaction between N_2 and O_2 in the engine (1)

(ii) CO toxic/effect on haemoglobin (1)

NO toxic/formation of acid rain (1)

[4]

[2]

(f) (i) platinum/Pt – allow palladium/Pd **or** rhodium/Rh (1)

(ii)
$$2CO + 2NO \rightarrow 2CO_2 + N_2(1)$$

[Total: 14]

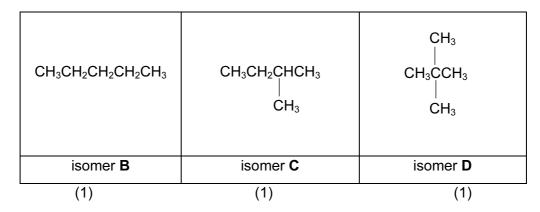
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	22

- 3 (a) (i) a compound which contains only carbon and hydrogen (1)
 - (ii) separation of compounds by their boiling points (1)

[2]

(b) (i) high temperature **and** high pressure (1)

high temperature and catalyst (1)


(ii)
$$C_{11}H_{24} \rightarrow C_5H_{12} + C_6H_{12}$$
 or

$$C_{11}H_{24} \rightarrow C_5H_{12} + 2C_3H_6$$
 or

$$C_{11}H_{24} \rightarrow C_5H_{12} + 3C_2H_4 (1)$$

[3]

(c) (i)

(ii) the straight chain isomer (isomer **B** above) (1)

it has the greatest van der Waals' forces (1)

because unbranched molecules have greater area of contact/can pack more closely together (1)

[6]

(d) enthalpy change when 1 mol of a substance (1)

is burnt in an excess of oxygen/air under standard conditions **or** is completely combusted under standard conditions (1)

[2]

	(e)	(i)	heat released =	= m c δT = 2	200 x 4.18 x 27.5 (1)	
			= 22990 J = 23.0 kJ (1)			
		(ii)	(ii) 23.0 kJ produced from 0.47 g of E			
			2059 kJ produc	sed from $\frac{0.4}{1.00}$	47 x 2059 g of E (1)	
			= 42.08 g of E	(1)		
			allow ecf in (i)	or (ii) on cai	ndidate's expressions	[4]
	(f)		$H_6 = 42$			
			s C ₃ H ₆			-4-
					[1]	
						[Total: 18]
4	(a)	rea	ction 1	reagent	NaOH/KOH (1)	
				solvent	H ₂ O/water/aqueous (1)	
		rea	ction 2	reagent	NH ₃ /ammonia (1)	
				solvent	ethanol/C ₂ H ₅ OH/alcohol (1)	
		rea	ction 3	reagent	NaOH/KOH (1)	
				solvent	ethanol/C ₂ H ₅ OH/alcohol (1)	[6]
	(b)) with CH ₃ CH ₂ CH ₂ I rate would be faster (1)				
		C-I bond is weaker than C-Br bond (1)			oond (1)	
		C-I bond energy is 240 kJ mol ⁻¹ , C-Br bond energy is 280 kJ mol ⁻¹ data must be quoted for this mark (1)			••	[3]
	(c)	nor	ı-toxic	non-flar	mmable	
		vola	atile/low bp	unreact	ive (any 2)	[2]

Mark Scheme: Teachers' version GCE A/AS LEVEL – October/November 2010

Page 5

Paper 22

Syllabus 9701

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	22

(d) (i) when a covalent bond breaks the two electrons in the bond are shared between the two atoms (1)

(ii)
$$CCl_2F_2 \rightarrow CCl_F_2 + Cl$$
 (as minimum) allow $CCl_2F + F(1)$ [2]

(e) they are flammable (1) [1]

[Total: 14]

5 (a) NaBr/sodium bromide [1]

(b) Br₂/bromine or SO₂/sulfur dioxide [1]

(c) concentrated sulfuric acid is an oxidising agent
or
phosphoric(V) acid is **not** an oxidising agent

[1]

[Total: 3]