MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/42 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9701	42	
1	(a) C ₆ H	H₅-CO	OCH_2OH or $C_8H_8O_2$ and $NaCl$ or Cl^-		(1) + (1)	[2]
	(b) (i)		exponent / power to which a concentration is raised in an equation, e.g. " ^a " in the equ: rate = k[A] ^a)	the rate equatic	on (1)	
	(ii)		1 and 2: rate increases by 50% as does [RC1], so rate 1 and 3: rate \propto [NaOH] ¹	$e \propto [RCl]^1$	(1) (1)	
	(iii)	(rate	e =) k[RC1][OH⁻]		(1)	
	(iv)		(can be a solid line)			
		• • •	(+) (+) (+) (+) (+) (+) (+) (+) (+) (+)	f candidate's r	(1) ate	[7]
	(c) (i)		l RC <i>l</i> / RCOC <i>l</i> to) (aq) Ag ⁺ / AgNO₃ <i>or</i> named indica pH probe	ator (e.g. MeOr)) or (1)	
			te ppt appears (faster with RCOC <i>l</i>) <i>or</i> turns acidic on the second sec	colour (e.g. red)	or (1)	
			ater is the only reagent, and no pH meter used: awa k, for "steamy / white fumes"	rd only the seco	ond	
	(ii)	RCC	D is polarised /) carbon is more δ + than in R-C <i>l or</i> can be can react via addition-elimination ntion of electronegativity on its own is not enough for the tagging of the canonic structure of t	·	e or (1)	[3]

[Total: 12]

	Page	e 3	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9701	42	
2	(a) le	ess s	oluble down group		(1)	
	la	attice	energy and hydration energies both decrease (i.e. beco	me less negative)	(1)	
	Ł	but H.E. decreases more (than L.E.) <i>or</i> change in H.E. outweighs L.E.		ghs L.E.	(1)	
	S	so ∆⊢	l _{sol} becomes more endothermic / less exothermic		(1)	[4]
	(b) ((i) fo	or Mg:∆H = 2993 – 1890 – (2 × 550) = (+)3 (kJ mol ^{−1})		(1)	
		fo	or Sr: ∆H = 2467 – 1414 – (2 × 550) = –47 (kJ mol ^{–1})		(1)	
	(i	•	$r(OH)_2$ should be \textbf{more} soluble in water, $\textbf{and} \ \Delta H$ is egative	more exothermic	: / (1)	
		A	ssuming "other factors" (e.g. ΔS , <i>or</i> temperature etc.) are	e the same	(1)	
	(ii		r(OH) ₂ should be less soluble in hot water, becaus e xothermic	e ∆H is negative	· / (1)	[5]
	(c) ((i) K	$f_{sp} = [Ca^{2+}][OH^{-}]^2$ (needs the charges) units: mol ³ dm ⁻⁹		(1) + (1)	
	(i	i i) n	(H ⁺) = n(OH [−]) = 0.05 × 21/1000 = 1.05 × 10 ⁻³ mol in 25 c	m ³		
		[(DH [−]] = 1.05 × 1000/25 = 4.2 × 10^{−2} (mol dm ^{−3})		(1)	
		[(Ca ²⁺] = 2.1 × 10⁻² (mol dm ⁻³)		(1)	
		K	$H_{sp} = 2.1 \times 10^{-2} \times (4.2 \times 10^{-2})^2 = 3.7 \times 10^{-5}$		(1)	
	(ii		ess soluble in NaOH due to the common ion effect <i>or</i> e o the l.h.s. by high [OH⁻] (NOT just a mention of Le Chat'		ed (1)	[6]

[Total: 15]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	42

3 (a) SiF₄ is symmetrical *or* tetrahedral *or* bonds are at 109° *or* has no lone pair *or* 4 electron pairs shared equally *or* all Si-F dipoles cancel out, *or* SF₄ has a lone pair (on S).

(b)

compound	molecule has an overall dipole	molecule does not have an overall dipole
BCl ₃		✓
PCl ₃	\checkmark	
CCl_4		\checkmark
SF ₆		✓

mark row-by-row,

- (c) (i) Si and B have empty / available / low-lying orbitals or C does not have available orbitals (allow "B is electron deficient" but not mention or implication of d-orbital on B)
 - (ii) $BCl_3 + 3H_2O \rightarrow H_3BO_3 + 3HCl \text{ or } 2BCl_3 + 3H_2O \rightarrow B_2O_3 + 6HCl$ (1)

$$SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl \text{ etc.}, e.g. \rightarrow Si(OH)_4, H_2SiO_3$$
(1) [3]

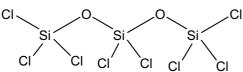
(d) (i)
$$Si_3Cl_8O_2$$
 (this has $M_r = 84 + 280 + 32 = 396$) or $Si4Cl_4O_9$ or $Si_8Cl_4O_2$ (1)

(ii)

mass number	structure
133	Cl ₃ Si
247	Cl_3 Si-O-Si Cl_2
263	Cl ₃ Si-O-SiCl ₂ -O

(3)

(1)

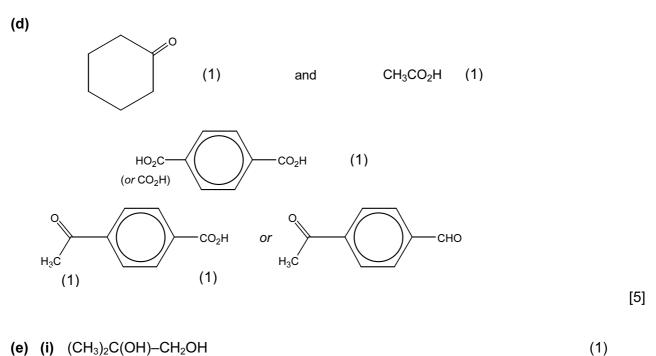

(2)

[1]

[2]

(if correct structures are **not** given for last 2 rows, you can award (1) mark for *two* correct molecular formulae: *either* $Si_2Cl_5O + Si_2Cl_5O_2$ *or* $Si_3ClO_8 + Si_3ClO_9$ *or* $Si_7ClO + Si_7ClO_2$)

(iii)



allow ecf on the structure drawn in the third row of the table in **(ii)** but any credited structure must show correct valencies for Si, C*l* and O. (1) [5]

[Total: 11]

Page 5		Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2010	9701	42	
4		1s ² 2s ² 2p ⁶ 3s²3p⁶3d³ 1s ² 2s ² 2p ⁶ 3s²3p⁶3d⁵) out of (2) for 3s ² 3p ⁶ 4s ² 3d ¹ and 3s ² 3p ⁶ 4s ² 3d ³)		(1) (1)	[2]
	•	three of the following points: initial (pale) green (solution) fades to (almost) colourless (allow yellow) then (permanent faint) pink finally (deep) purple		(3)	
	(ii) MnC	$D_4^- + 8H^+ + 5Fe^{2+} (+ 5e^-) \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+} (+ 100)$	5e ⁻)	(1)	[4]
	(c) E ^e value	s: $O_2 + 4H^+/2H_2O = +1.23V$ $Fe^{3+}/Fe^{2+} = +0.77 V$ $O_2 + 2H_2O/4OH^- = +0.40V$ $Fe(OH)_3/Fe(OH)_2 =$		(2)	
	E ^e _{cell} = +	0.46V (allow –0.37) in acid, but +0.96V in alkali <i>or</i> E ^e	$(OH^{-}) > E^{\circ}(H^{+})$	(1)	

If \mathbf{E}_{cell} is more positive it means a greater likelihood of reaction (1) [4]

(ii) reaction I: (cold dilute) KMnO₄ ("cold" not needed, but "hot" or "warm" negates) reaction II: Cr₂O₇²⁻ + H⁺ + **distil**

[3]

(1) (1)

[Total: 18 max 17]

Page 6		ge 6		Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9701	42	
5	(a)	(i)	because the carbons are sp^2 / trigonal planar / bonded at 1 by π bonds / orbitals	20° <i>or</i> are joined	d (1)	
		(ii)	because the $\underline{\pi}$ electrons / double bonds are delocalised / electrons are evenly distributed / spread out	in resonance o	or (1)	[2]
	(b)	(i)	$HNO_{3} + 2H_{2}SO_{4} \rightarrow NO_{2}^{+} + H_{3}O^{+} + 2HSO_{4}^{-}$ or $HNO_{3} + H_{2}SO_{4} \rightarrow H_{2}NO_{3}^{+} + HSO_{4}^{-} \text{ or } \rightarrow H_{2}O + NO_{2}^{+} + HSO_{4}^{-}$	⊦ HSO₄⁻	(1)	
		(ii)	electrophilic substitution mechanism:		(1)	
			NO_2^+ H NO_2 \rightarrow			
			curly arrows from benzene to NO_2^+ , and showing loss of H ⁺ correct intermediate (with "+" in the 'horse-shoe')		(1) (1)	[4]
	(c)	Cl ₂	$_{2}$ + A/C l_{3} / FeC l_{3} / Fe / A l / I $_{2}$ (aq or light negates this mark)		(1)	[1]
	(d)	(i)	\mathbf{Y} is chlorobenzene (1) \mathbf{Z} is 4-chloronitrobenzene (1)		(2)	
		(ii)	Sn / Fe + (conc) HCl		(1)	
			HC <i>l</i> is conc , and second step is to add NaOH(aq)		(1)	
		(111)	$\begin{bmatrix} NH_2 \\ BT \\ CI \\ CI \\ CI \\ BT \\ CI \\ C$	OH		

(4) [8]

	Page 7	Mark Scheme: Teachers' version Syllabus Pa	per
		GCE AS/A LEVEL – May/June 2010 9701 4	2
6	(a) (i)	Primary – the amino acid sequence / order / chain <i>or</i> diag. e.g. NH-C-CO-NH-C-CO <i>or</i> amino acids bonded by covalent / amide / peptide bonds (1)
	(ii)	Tertiary – the coiling / folding of the protein / polypeptide chain due to interactions between side-chains on the amino acids <i>or</i> the structure which gives the protein its 3-D / globular shape (1) [2]
	(b) (i)	Diagram: Minimum is CH ₂ S-SCH ₂ (1)
	(ii)	Oxidation / dehydrogenation / redox (1)
	(iii)	Hydrogen / H bonds; ionic interactions / bonds <i>or</i> ion-dipole <i>or</i> salt bridges; van der Waals' <i>or</i> id-id <i>or</i> induced / instantaneous dipole forces (ignore hydrophobic interactions) (2)	2) [4]
	(c) (i)	Hydrogen bonds (1)
	(ii)	Correct new strand present (see below) needed Diagram showing C=O bonding to N-H in new strand \checkmark and N-H bonding to C=O in new strand \checkmark e.g. $\downarrow \qquad \qquad$	
		chain. Deduct a penalty of –(1) for any wrong H-bond only if (2) marks have already been scored.	2) [3]

(d) There are bonds *or* S-S bridges / linkages between the layers / sheets
(in β-keratin) (but only van der Waals interactions between the layers in silk)
(1) [1]

[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	42

7 (a) The amino acid is uncharged / neutral / a zwitterion *or* charges balance / are equal (NOT "is non-polar")

It is equally attracted by the anode / + and the cathode / – or attracted by neither

The pH of the buffer is at the isoelectric point/IEP of the amino acid any two \checkmark (2) [2]

(b) (at pH 10), H₂NCH₂CO₂⁻ or NH₂CH₂COO⁻

(С)
٠.	-	,

amino acid	relative size	charge	
A	small(est) (1)	–ve	
В	large(st) (3)	–ve	
С	middle (2)	+ve	

(numbers are OK to show relative sizes)

Mark each row

(3) [3]

(1)

[1]

- (d) (i) lys val ser ala gly ala gly asp
 - (ii) gly ala gly (1)
 - (iii) aspartic acid (or lysine) (1) [4]

[Total: 10]

(2)

	Page 9			Mark Scheme: Teachers		Syllabus	Paper	
				GCE AS/A LEVEL – May/	June 2010	9701	42	
8	(a)			II – since electrons are used up circuit)	o / required / gaine	d / received (fro	om (1)	[1]
	(b)	(Pb ² (Pb0	²⁺ + 2 O ₂ + 4	$e^- \rightarrow Pb)$ 4H ⁺ + 2 $e^- \rightarrow Pb^{2+} + 2H_2O)$	$E^{\circ} = -0.13V$ $E^{\circ} = +1.47V$ two correct E° valu	es	(1)	
		Cell	volta	ge is 1.6(0) (V)			(1)	[2]
	(c)	(i)	. ,				(1)	
		(ii)		$^{\prime}$ are less heavy / poisonous / to c) H_2SO_4 within them	xic / polluting <i>or</i> a	re safer due to	no (1)	[2]
	(d)	(i)	Plati	num or graphite / carbon			(1)	
		(ii)	hydro	need large quantities of compres ogen would need to be liquefied o osive / combustible				[2]
	(e)	Glas	SS:	saves energy – the raw materials <i>or</i> making glass is energy-intensi		ole / cheap	(1)	
		Stee	el:	saves energy – extracting iron fro or mining the ore is energy intens or saves a resource – iron ore (N	sive	•	er one (1)	
		Plas	stics:	saves a valuable / scarce resour	ce: (crude) oil / pet	roleum	(1)	[3]
							[Total:	10]