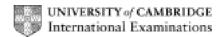
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

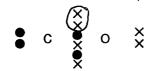
9701 CHEMISTRY

9701/21


Paper 2 (AS Structured Questions), maximum raw mark 60

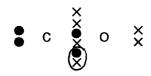
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

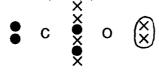
Mark schemes must be read in conjunction with the question papers and the report on the examination.

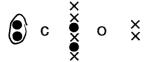

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	21

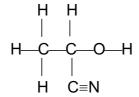

- 1 (a) fewer electrons in Cl_2 than in Br_2 (1) smaller van der Waals' forces in Cl_2 or stronger van der Waals' forces in Br_2 (1) [2]
 - (b) CO has a permanent dipole or N₂ does not (1) permanent dipole-permanent dipole interactions are stronger than those from induced dipoles (1) [2]
 - (c) (i) a co-ordinate bond (1)


(ii) a covalent bond (1)


or

(iii) a lone pair (1)

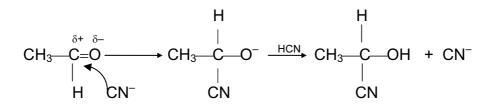
or


penalise any groups of 3 or 4 electrons that are circled

(d) CO and HCN both have a dipole or N_2 does not have a dipole (1) [1]

[3]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	21


(e) (i)

C≡N must be shown (1)

(ii) nucleophilic addition (1)

(iii)

C=O dipole correctly shown **or** correct curly arrow on C=O (1) attack on C^{δ^+} by C of CN^- (1) correct intermediate (1) CN^- regenerated (1)

[5 max]

[Total: 13]

				GCE AS/A LEVEL – May/June 2010	9701	21
2	(a)	(i)		graph has lower maximum (1) imum is to the right of previous maximum (1)		
		(ii)	H is	at <i>E</i> _a (1)		[3]
	` '			num amount of energy molecules must have or energy for the reaction to take place (1)	required (1)	[2
	(c)	(i)	100	or iron oxide (1) to 500 atm and 400–550°C s necessary – allow other correct values and units (1)		
		(ii)	C is	placed to the left of H (1)		

Mark Scheme: Teachers' version

(d) reaction 1

Page 4

has greater E_a (1)

because energy is needed to break covalent bonds (1)

(iii) more molecules now have energy $>E_a$ (1)

reaction 2

has lower Ea

or actual reaction is $H^+ + OH^- \rightarrow H_2O$

or reaction involves ions (1)

opposite charges attract (1)

[Total: max 12]

[4]

[4]

Syllabus

Paper

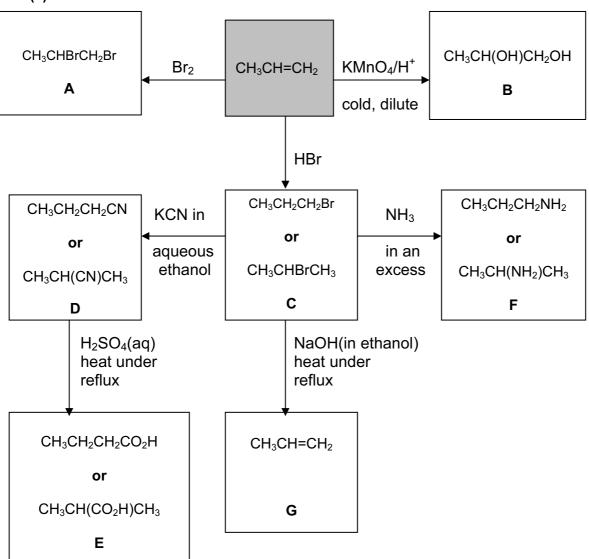
Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	21

- 3 (a) Accept only symbols.
 - (i) S or S_8 (1)
 - (ii) K or $K^{+}(1)$
 - (iii) Na allow K or Li (1)
 - (iv) Cl or Br or F(1)
 - (v) Mg or Ca or Li allow Ni, Cu, or Zn (1)

[5]

- (b) Accept only formulae.
 - (i) F₂O (1)
 - (ii) SO_2 and SO_3 or P_2O_3/P_4O_6 and P_2O_5/P_4O_{10} or any two from N_2O_3 , NO_2/N_2O_4 , N_2O_5 or any two from Cl_2O , ClO_2 , ClO_3 , Cl_2O_7 (1+1)

[3]


- (c) (i) NaF, MgF₂, AlF₃ any two (1)
 - (ii) octahedral (1)
 - (iii) I atom is larger than Cl atom (1)
 - (iv) cannot pack 7 F atoms around Cl atom or can pack 7 F atoms around I atom (1)

[4]

[Total: 12]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	21

give 1 for each correct structure (7 × 1) [7]

- **(b) (i)** ester (1)
 - (ii) heat under reflux (1) trace of conc. H_2SO_4 or presence of HCl(g) (1) [3]

[Total: 10]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	21

- 5 (a) (i) same molecular formula but different structural formula/structure (1)
 - (ii) asymmetric C atom/chiral centre present (1) >C=C< bond present (1) [3]
 - (b) $NaO_2CCH(OH)CH(OH)CO_2Na$ (1) [1]
 - (c) no because there is no chiral carbon atom present (1) [1]
 - (d) (i) C:H:O = $\frac{35.8}{12}$: $\frac{4.5}{1}$: $\frac{59.7}{16}$ this mark is for correct use of A_r values (1) C:H:O = 2.98:4.5:3.73 C:H:O = 1:1.5:1.25 this mark is for evidence of correct calculation (1) gives empirical formula of **W** is $C_4H_6O_5$
 - (ii) $C_4H_6O_5 = 12 \times 4 + 1 \times 6 + 16 \times 5 = 134$ molecular formula of **W** is $C_4H_6O_5$ (1) [3]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	21

(e) (i)
$$n(OH^{-}) = \frac{29.4 \times 100}{1000} = 0.0294$$
 (1) $n(\mathbf{W}) = \frac{1.97}{134} = 0.0147$ (1)

no. of -CO₂H groups present

in one molecule of **W** = $\frac{0.0294}{0.0147}$ = 2 (1)

or
$$n(OH^{-}) = \frac{29.4 \times 1.00}{1000} = 0.0294 (1)$$

1.97 g W = 0.0294 mol NaOH
134 g W = $\frac{0.0294 \times 134}{1.97} = 1.999 \approx 2 \text{ mol NaOH (1)}$

no. of $-CO_2H$ groups present in 1 molecule of **W** = 2 (1)

(ii)

one correct structure (1) correctly displayed (1) allow any correct ether

[2]

[3]

[Total: 13]