MARK SCHEME for the May/June 2013 series

9700 BIOLOGY

9700/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9700	43
			-

Mark scheme abbreviations

; / R AW <u>underline</u> max ora mp ecf I	separates marking points alternative answers for the same point reject accept (for answers correctly cued by the question, or by extra guidance) alternative wording (where responses vary more than usual) actual word given must be used by candidate (grammatical variants excepted) indicates the maximum number of marks that can be given or reverse argument marking point (with relevant number) error carried forward ignore
l	ignore
AVP	Alternative valid point (examples given as guidance)

3 Mark Scheme	Syllabus	Paper
GCE AS/A LEVEL – May/June 2013	9700	43
Expected Answers		
A – <u>palisade</u> , mesophyll/cell/tissue/layer;		
B – guard cell;		
C – (sub-stomatal) air space;		
1. through the stoma(ta);		
2. by diffusion/description;		
3. from the, atmosphere/air;		[max
ribulose bisphosphate; I RuBP		
reduces/donates hydrogen ; A H/hydrogen atoms/H ⁺ AND e [−] R H ⁺ / H ₂		
GP to TP; A PGA to PGAL		
		[Total:
	Expected Answers A – palisade, mesophyll/cell/tissue/layer; B – guard cell; C – (sub-stomatal) air space; 1. through the stoma(ta); 2. by diffusion/description; 3. from the, atmosphere/air; ribulose bisphosphate; I RuBP reduces/donates hydrogen ; A H/hydrogen atoms/H ⁺ AND e ⁻ R H ⁺ / H ₂ GP to TP ;	Expected Answers A – palisade, mesophyll/cell/tissue/layer; B – guard cell; C – (sub-stomatal) air space; 1. through the stoma(ta); 2. by diffusion/description; 3. from the, atmosphere/air; ribulose bisphosphate; I RuBP reduces/donates hydrogen ; A H/hydrogen atoms/H ⁺ AND e ⁻ R H ⁺ / H ₂ GP to TP ;

	only females, bite humans/feed on blood/transmit disease;	
	I GM male mosquitoes are not infected with the disease	[1]
(b)	1. easier to, identify/screen;	

- 2. more economical/time saving/labour saving;
- 3. resistance gene(s) can be passed to other bacteria;
- 4. idea of antibiotics no longer effectiveOR requiring development of new, antibiotics/treatments; [max 2]

Page 4		Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2013	9700	43
(c) (i)	prod	uction of tTA causes production of more tTA/AW;		[1]
(ii)	•	comoter, initiates transcription/switches on gene/causes xpression/AW;	gene	
	2. re	f. binding of, RNA polymerase/transcription factors;		
	3. ot	herwise gene has to be inserted near an existing promo	ter;	
	4. th	is is difficult to do/this may disrupt expression of existing	gene;	
	5. in	eukaryotes precise position of promoter important;		[max 3]
(iii)	1. G	M larvae do not die immediately;		
	2. so	o gives longer time for tTA, production/build up;		
		o tTA gets into environment (when GM larvae die) and k rvae;	ills non-GM	
	4. so	o (longer-lived larvae) compete with non-GM larvae (for,	food/space);	[
	R ret	f. to larvae breeding		[max 2]
(d) (i)		hemical A has, similar shape to tTA/complementary sha ite;	pe to binding	
		o chemical A binds to, DNA/binding site, AND prevents inding;	tTA from	
		nemical A , binds to/changes shape of, tTA ND so prevents tTA binding to, DNA/binding site;		
	4. st	ops positive feedback/small quantity of tTA does not kill	;	[max 2]
		nemical A , binds to/changes shape of/breaks down, tTA oxic ;	, so no longer	
(ii)		M males, mated/bred; ith GM females		
	2. m	osquitoes fed chemical A ;		
	3. m	ales, identified/separated;		
	4. re	f. cloning;		[max 2]

	Pag	ge 5		Mark Scheme	Syllabus	Paper
				GCE AS/A LEVEL – May/June 2013	9700	43
				M males die if they cannot get chemical A; males mate), their offspring die;		
			3. or	nly mate with, other <i>A. aegypti</i> /their own species;		[max 2]
						[Total: 15]
3	(a)	1.	nutr	ients added and product removed at a steady rate/AW;		
		2.	(so)	volume kept constant;		
		3.	orga	anism kept at, exponential/log, phase of growth;		[max 2]
	(b)	1.	to, li	inched fungus tangles together in clumps so) too heavy i ift/stir ref. to blocking;	for bubbles	
		2.	diffi	cult to, harvest/get desired texture;		
		3.	mut	ant may be, harmful when eaten/toxic/allergenic;		
		4.	mut	ant may produce, distasteful/coloured, substance;		
		5.	mut	ant may be less productive;		
		6.	mut	ant may have high concentration of RNA (which is difficu	ult to lower);	
		7.	арр	roval for sale only applies to original strain;		[max 4]
	(c)	86	4 kg;			[1]
	V 7		,			
						[Total: 7]

Page 6		5	Mark Scheme	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2013	9700	43
(a)	(i)		• •		
		2.	oxygen is the final electron acceptor;		
		3.	in the, inner membrane of the mitochondrion/cristae;		
		4.	transfer of electron (between electron carriers) provides e	energy;	
		5.	energy used to pump hydrogen ions (into intermembrane	space);	
		6.	creates proton gradient;		
		7.	diffusion of hydrogen ions down their electrochemical gra causes ATP to be synthesised;	dient	
		8.	ref. chemiosmosis/ATP synthase/stalked particles;		
		9.	idea that if less oxygen (consumed/available) then fewer transferred along the chain;	electrons	[max 4]
	(ii)	1.	at high temperatures, reactions/enzyme activity/metabolis	sm, faster;	
		2.	because, molecules/enzymes/substrates, have more kine	etic energy;	
		3.	more frequent collisions;		
		4.	therefore, respiration/Krebs cycle/electron transport chain of reduced NAD, take place at a faster rate;	n/production	
		5.	idea of increase in rate of anabolic reactions (requiring m	ore ATP);	[max 3]
(b)	(i)	1.	oxygen consumed = oxygen inhaled – oxygen exhaled;		
		2.	measure oxygen consumption at rest (x) and after exercise	se stops (y);	
		3.	extra oxygen consumed/oxygen debt = y – x;		
		4.	measure mass of lizard;		[max 2]
	(ii)	1.	less (oxygen debt)(for Varanus); ora		
		2.	difference is greater at higher temperatures;		
		3.	any two comparative figures at one temperature including A 102.0 cm ³ O ₂ kg ⁻¹ at 30°C and 40°C	ı units;	[3]
	(b)	(a) (i) (ii) (ii)	 2. 3. 4. 5. 6. 7. 8. 9. (ii) 1. 2. 3. 4. 5. (b) (i) 1. 2. 3. 4. (ii) 1. 2. 3. 4. 1. 2. 3. 4. (ii) 1. 2. 3. 4. (ii) 1. 2. 	 (a) (i) 1. ATP is made, in the electron transport chain/by oxidative phosphorylation; 2. oxygen is the final electron acceptor; 3. in the, inner membrane of the mitochondrion/cristae; 4. transfer of electron (between electron carriers) provides e 5. energy used to pump hydrogen ions (into intermembrane 6. creates proton gradient; 7. diffusion of hydrogen ions down their electrochemical gracauses ATP to be synthesised; 8. ref. chemiosmosis/ATP synthase/stalked particles; 9. idea that if less oxygen (consumed/available) then fewer transferred along the chain; (ii) 1. at high temperatures, reactions/enzyme activity/metabolis 2. because, molecules/enzymes/substrates, have more kines 3. more frequent collisions; 4. therefore, respiration/Krebs cycle/electron transport chair of reduced NAD, take place at a faster rate; 5. idea of increase in rate of anabolic reactions (requiring m (b) (i) 1. oxygen consumed = oxygen inhaled – oxygen exhaled; 2. measure oxygen consumption at rest (x) and after exercise 3. extra oxygen consumed/oxygen debt = y - x; 4. measure mass of lizard; (ii) 1. less (oxygen debt)(for <i>Varanus</i>); ora 2. difference is greater at higher temperatures; 3. any two comparative figures at one temperature including 	 (a) (i) 1. ATP is made, in the electron transport chain/by oxidative phosphorylation; 2. oxygen is the final electron acceptor; 3. in the, inner membrane of the mitochondrion/cristae; 4. transfer of electron (between electron carriers) provides energy; 5. energy used to pump hydrogen ions (into intermembrane space); 6. creates proton gradient; 7. diffusion of hydrogen ions down their electrochemical gradient causes ATP to be synthesised; 8. ref. chemiosmosis/ATP synthase/stalked particles; 9. idea that if less oxygen (consumed/available) then fewer electrons transferred along the chain; (ii) 1. at high temperatures, reactions/enzyme activity/metabolism, faster; 2. because, molecules/enzymes/substrates, have more kinetic energy; 3. more frequent collisions; 4. therefore, respiration/Krebs cycle/electron transport chain/production of reduced NAD, take place at a faster rate; 5. idea of increase in rate of anabolic reactions (requiring more ATP); (b) (i) 1. oxygen consumed = oxygen inhaled – oxygen exhaled; 2. measure oxygen consumption at rest (x) and after exercise stops (y); 3. extra oxygen consumed/oxygen debt = y – x; 4. measure mass of lizard; (ii) 1. less (oxygen debt)(for <i>Varanus</i>); ora 2. difference is greater at higher temperatures; 3. any two comparative figures at one temperature including units;

Page 7		Mark Scheme	Syllabus	Paper
		AS/A LEVEL – May/June 2013	9700	43
(iii)	1. Varanus uses, le running);	ess anaerobic/more aerobic, respiration	n (when	
	2. more ATP produ	uced per glucose molecule;		
	3. able to run for lon	ng time;		
	4. good chance of c	atching prey;		[max 3]
(iv)	assume Varanus the 1. larger surface ar	<i>roughout</i> rea, in lungs/for gas exchange;		
	 more oxygen ab exchange; 	osorbed into blood (per unit time)/faster	r rate of gas	
	3. more oxygen su	pplied to muscles (so oxygen debt lo	wer);	[max 2]
				[Total: 17]
5 (a) (ir	dicates that they) ha	ave undergone meiosis I;		
	are, haploid/n ; 23 chromosomes			[2]
(b) (i)	water moved out of	cells;		
	down water potentia lower water potentia	al gradient/into a more concentrated so al;	olution/into a	
	(by) osmosis;			[max 2]
(ii)	(B) has, higher surv fertilisations;	vival of oocytes after thawing/more suc	cessful	
	supporting figures;			
	these should compa B	are columns 1 or 2 with column 3 or 5 a	for both A and	[2]
	raw or manipulated	data can be given		[2]
(iii)	idea of deferring, fe	rtilisation/implantation;		
	idea of preserving o to medical treatmen	oocytes from a woman who may lose h ht;	er fertility due	
	idea of fewer rounds	s of, hormone treatment/oocyte retriev	al;	[max 1]
				[Total: 7]

Pag	e 8		Mark So	cheme	Syllabus	Paper
		GCE	AS/A LEVEL	– May/June 2013	9700	43
(a) ((i) A	– calcium ions ;	A Ca ²⁺	R calcium/Ca/Ca⁺		
	E	3 – sodium ions ;	A Na⁺	R sodium/Na		[2]
(1	ii) <u>e</u>	xocytosis;				[1]
(i	ii) d	epolarisation (of p	ost-synaptic n	nembrane)/action potential	;	[1]
(iv) 1.		. splits ACh;				
	2	. into acetate and	choline;			
	3	. stops continuous	depolarisatio	n of postsynaptic membra	ne/AW;	
	4	. choline recycled	(into presynaj	ptic neurone);		[max 3]
(h)	bind	la ta/blacka, danam	vina racontar	s (on postsynaptic membra	20)	
(b)		•	·		ne),	
		vents depolarization		aptic membrane);		
		ices effect of dopa				
	R r	educes amount of	oopamine			[max 2]
(c)		13 base deletion ne <u>shift</u> /alters <u>readi</u>	ng <u>frame</u> (afte	er mutation);		
	(so)	all amino acids dif	ferent after m	nutation;		
	3-D	shape/tertiary stru	cture, of prote	ein changed;		
	(wh	ereas) 21 base-pai	r deletion, los	ses 7 amino acids/no frame	e shift;	
	(whe	ereas) substitution,	may change	only one amino acid/may	be silent;	[max 3]
(d)	incre	eased chances of,	survival/bree	ding/mating;		
	prov	vides a <u>selective</u> ac	Ivantage;			
	<u>allel</u>	<u>e</u> passed on (to ne	ext generation);		
	allel	e increases in freq	uency over ti	me;		
	<u>natu</u>	iral selection;				[max 3]
						[Total: 15]

	Page 9			GCE AS/	Mark Sc A LEVEL -	heme - May/June 2013		Syllabus 9700	Paper 43
7	(a)	<i>gene</i> section	carried of DNA		of nucleoti	ome/ X , and not or des/sequence of de;		Ύ;	[2]
	(b)	parent pheno		tortoisesh	ell female	black i	male		
		parent genoty		X ^B 2	X ^o	X ^B Y	(;		
		gamet	es	X ^B	Xo	X ^B	Υ;		
		offspri genoty	•	X ^B X ^B	Х ^в Ү	X ^B X ^O	Х ^о Ү;		
		offspri pheno	-	black female	black male	tortoiseshell female	orange male;		[4]
	(c)	tortoise	shell is	heterozygo	us;				
		males,	heterog	ametic/only	one X chr	omosome;			
		(therefo	ore) only	/ one copy (of gene/on	ly black or orange	e allele pres	sent;	[max 2]
									[Total: 8]
8	(a)	550(%)	;;						
		allow oi	ne marl	k for <u>104 – 1</u> 16	<u>'6</u> (x 100)			[2]
	(b)	1. limitir	ng/dens	sity depende	ent, factors	or described;			
		2. reach	ned car	rying capac	ity/AW;				
		3. comp	petition/	AW;					
		4. for, fo	ood/nes	sting sites/re	esources;				
		5. large	popula	tion attracts	predators	;			
		6. large	popula	ition spread	s disease ı	more easily;			[max 4]

Page 10	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9700	43

- (c) 1. not many to begin with;
 - 2. are carnivorous;
 - 3. prey numbers fell;
 - 4. slower reproductive rate;
 - 5. more likely to migrate (to other areas);

[max 2]

[Total: 8]

- 9 (a) 1. cultural/aesthetic / leisure, reasons;
 - 2. moral/ethical, reasons ; e.g. right to exist/prevent extinction;
 - 3. resource material ; e.g. wood (for building)/fibres for clothes/food for humans/(herbal) medicine
 - 4. (eco)tourism;
 - 5. economic benefits;
 - 6. ref. resource / species, <u>may have use in future</u>/AW; e.g. medical use
 - 7. maintains, food webs *I* food chains; A description
 - 8. nutrient cycling;
 - 9. protection against erosion;
 - 10. climate stability;
 - 11. maintains, (large) gene pool/genetic variation;
 - 12. scientific research;

[max 7]

Page 11	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9700	43

- (b) advantages (max 5)13. can monitor health of mother;
 - 14. can monitor development of foetus;
 - 15. storage of, sperm/eggs/gametes;
 - 16. artificial insemination;
 - 17. IVF;
 - 18. ref. surrogate mothers;
 - 19. international cooperation;
 - 20. genetic records kept;
 - 21. can prevent extinction/extend range of a species/used in restoring ecosystem;

disadvantages (max 5) 22. unnatural environment;

- 23. stress in captivity;
- 24. behavioural changes;
- 25. reproductive cycles disrupted;
- 26. may reject selected mate;
- 27. examples of problems with release ;;
- 28. difficulty in finding food may not integrate into groups more susceptible to disease very little natural habitat left to release animals into

[max 8]

[Total: 15]

Page 12	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9700	43

- **10 (a)** 1. *in C3 plants at high temperature* rubisco combines with oxygen;
 - 2. less rubisco to combine with CO₂;
 - 3. *in C4 plant such as maize idea of* spatial separation of light-dependent stage from carbon fixation;
 - 4. rubisco/RuBP, in bundle sheath cells;
 - 5. kept away from, oxygen/air;
 - 6. mesophyll cells, absorb CO₂;
 - 7. CO_2 released to combine with RuBP;
 - 8. avoid/reduce, photorespiration;
 - 9. high optimum temperatures of enzymes involved;
 - 10.Calvin cycle can continue;
 - 11.AVP ; e.g. CO₂ reacts with PEP PEP carboxylase

[max 7]

Page 13	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9700	43
(b) 12.	ight energy absorbed by chlorophyll; A photosystems/pigments		
13.	electron, excited/raised to higher energy level;		
14.	(electron) emitted by chlorophyll; A photosystems/pigments		
15.	passes to electron, acceptor/carrier;		
16.	passes along, chain of electron carriers/ETC/Electro	on Transfer Chain;	
17.	energy released used to pump protons; I ATP production here		
18.	nto thylakoid space;		
19.	thylakoid membrane impermeable to protons;		
20.	proton gradient forms;		
21.	protons move down gradient;		
22.	through/using, ATP synthase/ATP synthetase; R ATPase		
23.	enzyme rotates;		
24.	ATP produced from ADP and Pi;		

[max 8]

[Total: 15]