MARK SCHEME for the May/June 2013 series

9700 BIOLOGY

9700/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9700	42

Mark scheme abbreviations:

•	separates	marking	nointe
,	separates	marking	points

I alternative answers for the same point

R reject

- A accept (for answers correctly cued by the question, or by extra guidance)
- **AW** alternative wording (where responses vary more than usual)
- **<u>underline</u>** actual word given must be used by candidate (grammatical variants excepted)
- max indicates the maximum number of marks that can be given
- ora or reverse argument
- **mp** marking point (with relevant number)
- ecf error carried forward
- I ignore
- **AVP** Alternative valid point (examples given as guidance)

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9700	42

1 (a) (i) in high light intensity

1. (as temperature increased) the volume of oxygen released / rate of photosynthesis, increased to a peak **and** then fell;

in low light intensity

- 2. (as temperature increased) the volume of oxygen released / rate of photosynthesis, remained constant **and** then fell;
- 3. supporting figures (two oxygen values at two different temperatures plus units); [3]
- (ii) 1. light no longer limiting / temperature now limiting;
 - 2. enzymes denatured / described;
 - 3. so fewer enzyme-substrate complexes / AW;
 - 4. so less photolysis (leads to less oxygen produced); [2 max]
- (b) (i) <u>photolysis;</u>
 [1]

 (ii) P680; A (photosystem) II
 [1]

 (iii) respiration uses oxygen;
 [1]
 - [Total: 8]

- 2 (a) (i) 1. easier to, identify / screen;
 - 2. more economical / time saving / labour saving / harmless;
 - 3. resistance gene(s) can be passed to other bacteria;
 - idea of antibiotics no longer effective
 or
 requiring development of new antibiotics; [2 max]
 - (ii) 1. promoter, initiates transcription / switches on gene /causes gene expression / AW;
 - 2. ref. binding of, RNA polymerase / transcription factors;
 - 3. otherwise gene has to be inserted near an existing promoter;
 - 4. this is difficult to do / this may disrupt expression of existing gene;
 - 5. in eukaryotes precise position of promoter important;
 - 6. idea that you need a coral promoter to switch on a coral gene; [3 max]

Pa	Page 4		Mark Scheme	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2013	9700	42
(b)	(i)	1.	DNA fragmented by, restriction enzyme(s) / endonuclea	ase(s);	
		2.	loaded (into wells) at, negative end / cathode end, (of g	el);	
		3.	ref. buffer / electrolyte;		
		4.	phosphate groups of DNA give negative charge;		
		5.	(negatively charged) DNA attracted to, anode / positive	electrode;	
		6.	separation due to, electric field / PD / potential difference	e;	
		7.	short pieces / smaller mass, move further (in unit time)	/ move faster; or	a
		8.	ref. impedance of gel / AW;		[4 max]
	(ii)	1.	idea of comparison of position with reference DNA;		
		2.	ref. staining / fluorescence in UV;		
		3.	by use of <u>DNA</u> probe;		
		4.	ref. single-stranded / complementary base pairing;		[2 max]
(c)	1.	allo	ows estimate of numbers of each type;		
	2.	to c	check success (of release of sterile males);		
	3.	if st	terile males wrongly identified as wild;		
	4.	the	re will be a waste of resources, e.g. pesticides;		
	5.	if w	ild males wrongly identified as sterile males;		
	6.	аp	otential infestation may be missed;		
	7.	AV	P; e.g. to determine which moths to (re)release		[2 max]
(d)	1.	tha	t DsRed is not toxic to predators of the moth;		
	2.	tha	t DsRed does not persist in the environment;		
	3.	tha	t the gene cannot pass to other organisms;		
	4.	doe	es not alter, food web / ecosystem, (in harmful way);		[2 max]
					[Total: 15]

	Page 5		;	Mark Scheme	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2013	9700	42	
3	(a)	(a) 1. nutrients added and product removed at a steady rate / AW;					
		2.	(so)	volume / named condition, kept, constant / at an optimu	m;		
		3.	orga	anism kept at, exponential / log, phase of growth;		[2 max]	
	(b)	(i)	1.	at, low / 7.0, (carbon concentration) higher temper growth / dry mass;	ature causes	increases in,	
			2.	at, high / 14.0, (carbon concentration) higher temperaturin, growth / dry mass;	re causes little	or no change	
			3.	comparative figures plus units;		[3]	
		(ii)		oon or nitrogen source to produce, amino acids / proteins / enzymes;			
			2.	to produce, nucleic acids / nucleotides / ATP / purines / N-base;	pyrimidines / r	named	
			3.	chitin / building block, for cell wall;			
				<i>oon only</i> used in respiration;			
			5.	to produce, carbohydrates / sugar / polysaccharide / gly	cogen / lipids;	[3 max]	
						[Total: 8]	

Page 6		;	Mark Scheme	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2013	9700	42
(a)	(i)	inne	er membrane / crista(e); [1]		
	(ii)	1.	(electron comes from) hydrogen (atom); $\mathbf{R} \ H^+ / H_2$		
		2.	(from) reduced NAD / reduced FAD;		
		3.	(from) dehydrogenation / oxidation, reactions;		
		4.	(from substances in) Krebs cycle / link reaction / glycoly	/sis;	
		5.	in, matrix of mitochondrion / cytoplasm;		[max 3]
	(iii)	1.	final electron acceptor / accepts electron from last carrie	er;	
		2.	so carrier can be reduced again;		
		3.	so electrons can keep flowing (along ETC) / so ETC car	n continue to w	ork;
		4.	(oxygen) combines with H^{+} to form water;		[2 max]
(b)	(i)	1.	(when pump stops working), resting potential not mainta or pump usually maintains the resting potential;	ained	
		2.	(during resting potential) membrane polarised		
			or positive charge outside (neurone) / negative charge ins neurone relative to outside / potential difference across		-70mV inside
		3.	(when pump stops working), ions (only) move by diffusi	on;	
		4.	Na⁺ into the neurone;		
		5.	outward diffusion of $K^{\!\scriptscriptstyle +}$ is limited / $K^{\!\scriptscriptstyle +}$ stay in neurone;		
		6.	ref. non voltage-gated channels;		
		7.	(eventually) inside of the neurone, becomes less ne more positive ions or	-	、
			there is a reduced potential difference across the memb	orane;	[max 4]
	(ii)	1.	voltage gated (calcium) channels open;		
		2.	(calcium ions move in) by diffusion / move down their co	oncentration gra	adient; [2]

	Page 7		,	Mark Scheme	Syllabus	Paper
				GCE AS/A LEVEL – May/June 2013	9700	42
	(c)	(i)	1.	Na ⁺ / K ⁺ , cannot move through membrane;		
			2.	so potential across membrane maintained even when depolarisation does not happen;	pump stops / s	so membrane
			3.	calcium ions cannot enter cell;		
			4.	so, (destructive) enzymes not activated;		[max 2]
		(ii)	1.	gene (for protein channels), expressed less / switched of	off;	
			2.	transcription, reduced / stopped;		
			3.	AVP; e.g. reduced aerobic respiration / less ATP, for tra	inscription	[max 2]
						[Total: 16]
5	(a)	cor	rect	ref. to woman being given hormones;		
•	(~)					
		ref.	to o	ne suitable hormone, e.g. FSH / gonadotrophin / LH / G	nRH agonist;	[2]
	(b)	1.	<u>cap</u>	acitation;		
		2.	able	e to undergo acrosome reaction;		
		3.	able	e to swim (more vigorously);		[max 2]
	(c)	(i)	1.	fewer IVF cycles needed;		
			2.	no need to transfer more than one embryo to the uterus	;	
			3.	so less chance of problems from multiple embryos;		
			4.	less chance of miscarriage;		[max 2]
		(ii)	1.	need to wait (at least 7.8 hours) before transferring emb	oryo to uterus;	
			2.	may be difficult to keep embryos in ideal conditions duri	ng this time per	iod;
			3.	embryos destroyed;		[2 max]
						[Total: 8]

Page 8	3	Mark Scheme	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2013	9700	42
6 (a) (i)	17.9	••		
	allov	v 125 700 (× 100) or 17.8 for one mark		[2]
(ii)		<i>can pass through glomerular capillaries because</i> (max fenestrations in capillary <u>endothelium;</u> A hole / pores /		
	2.	basement membrane acts as a filter;		
	3.	no substances >68 000 MM can get through;		
	4.	no cells can get through;		
		<i>can pass through podocytes because</i> ave, projections / AW;		
	6. ga	aps (between projections); A filtration slits		[4 max]
(b) (i)	micr	ovilli;		[1]
(ii)	1.	produce ATP / provide energy;		
	2.	for active transport of Na⁺;		
	3.	out (of cell);		[max 2]
(iii)		<i>k first two answers</i> named ion / mineral ions;		
	vitar	nins;		
	amir	no acids;		
	gluc	ose;		
	som	e urea;		[max 2]
				[Total: 11]

Page 9			Mark Scheme		Syllabus	Paper
		GCE AS/A	LEVEL – May/June	e 2013	9700	42
7 (a)		le for warfarin resis e for warfarin susce				
	parental phenotyp parental genotype		sistant male W ^R W ^S	resistan W ^R ۱	t female V^s	
	gametes	W ^R	W ^s	W ^R	W ^s ;	;
	offspring genotype	W ^R W ^R S	W ^R W ^S	W ^R W ^S	W ^s W ^s	;
	offspring phenotyp	resistant es	resistant	resistant	suscepti	ble ; [3]
(b)	not enouç	gh Vitamin K found	(in the wild) / require	too much Vitar	nin K;	[1
(c)	competitiv	ve / reversible;				
		ncentration of inhibi	tor increases, the ra	te of the (inhibit	ed) reaction de	creases
	or as dose c	of warfarin increases	s, the rate at which b	lood clots decre	eases; ora	[2]
(d)	1. differ	ent, codon / triplet;				
	2. stop	codon;				

- 3. different amino acid;
- 4. different, primary / secondary / tertiary / 3D, structure;
- 5. shortened, polypeptide / protein;
- 6. change in function of protein;

[Total: 9]

[3 max]

	Paç	ge 10	0	Mark Scheme	Syllabus	Paper
				GCE AS/A LEVEL – May/June 2013	9700	42
8	(a)	1.	allo	opatric speciation;		
		2.	fish	populations isolated;		
		3.	geog	graphical / physical / land, barrier;		
		4.	no, t	preeding / allele flow / gene flow, between populations;		
		5.	muta	ations occur;		
		6.	diffe	rent selection pressures / different (environmental) cond	litions;	
		7.	adva	antageous alleles selected for / advantageous alleles pa	ssed on;	
		8.	char	nge in, allele frequency / gene pool;		
		9.	(can	result in) different chromosome numbers;		
		10.	gene	etic drift;		
		11.	ultim	nately, reproductively isolated / cannot interbreed;		[5 max]
	(b)	1.	cond	litions remain the same within the pool;		
		2.	best	adapted fish (to conditions in pool) survive;		
		3.	extre	eme phenotypes, selected against / do not survive;		[2 max]
	(c)	1.	num	bers of all species increase initially;		
		2.	due	to more, breeding space / food;		
		3.	com	petition between (four) species;		
		4.	(pos	sible) reduction in numbers within, some / all, species;		
		5.	not a	all species (may) survive;		
		6.	diffe	rent species, restricted to different areas / occupy differe	ent niches;	
		7.	inter	breeding / hybridisation;		
		8.	AVP	; e.g. ref. new selection pressure		[3 max]
						[Total: 10]

Page 11	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9700	42

- 9 (a) 1. DNA not surrounded by nuclear membrane / no nucleus;
 - 2. (prokaryote) DNA is circular;
 - 3. DNA not associated with histones; A naked DNA
 - 4. plasmids (may) be present;
 - 5. no (double) membrane-bound organelles; A no, mitochondria / chloroplasts
 - 6. no, ER / Golgi; A ribosomes not attached to membranes
 - 7. ribosomes,70S / 18 nm / smaller (than eukaryotic cells);
 - 8. cell wall made of, peptidoglycan / murein / amino sugars / AW;
 - 9. (usually) unicellular;
 - 10. 0.5 to 5.0 μ m diameter; **A** any value between 0.5 and 5.0 as long as μ m is used
 - 11. AVP; (may) have, flagella / pili / capsule / slime layer [8 max

Page 12	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9700	42

- (b) 12. ores (may) contain metal sulfides;
 - 13. example; e.g. iron / copper / zinc / cobalt / lead
 - 14. insoluble in water so difficult to extract;
 - 15. bacteria oxidise metal sulfide;
 - 16. to soluble sulfate;
 - 17. bioleaching;
 - 18. example of bacteria; e.g. A.ferrooxidans
 - 19. bacteria need to survive in acidic conditions;
 - 20. mixture of bacteria required (in bioheap);
 - 21. (in order to) survive a wide range of temperatures / range of bacteria with different temperature optima;
 - 22. advantage;
 - 23 e.g. low grade ores / spoil heaps, can be exploited can get metal from industrial waste does not produce sulfur dioxide can be done in situ low energy demand less (heavy) machinery not labour intensive relatively cheaper (than other mining methods)
 - 24. AVP; e.g. ref. gold / uranium

[7 max]

[Total: 15]

	Page 13		3	Mark Scheme	Syllabus	Paper
				GCE AS/A LEVEL – May/June 2013	9700	42
10	(a)	a) ignore references to function accept from diagram				
		1.	3 – 7	10 μm (diameter);		
		2.	dout	ole membrane;		
		3.	grou	ind substance / stroma;		
		4.	cont	ains enzymes / named enzyme, e.g. rubisco;		
		5.	also	, sugars / lipids / starch;		
		6.	70S	/ AW, ribosomes;		
		7.	circu	ılar DNA;		
		8.	inter	rnal membrane system / fluid-filled sacs / thylakoids; A	flattened sacs	
		9.	gran	a are stacks of thylakoids;		
		10.	(gra	na) membranes hold, photosynthetic pigments / ATP sy	nthase / ETC;	[7 max]
	(b)	11.	ethe	ene (in plant);		
		12.	stim	ulates production of gibberellin;		
		13.	gibb	erellin stimulates, cell division / cell elongation / increas	e in stem length;	,
		14.	leav	es / flowers, above water;		
		15.	(so)	photosynthesis can occur;		
		16.	(so)	sexual reproduction / pollination, can occur;		
		17.	aere	enchyma / description;		
		18.	assi	sts gas diffusion (within plant);		
		19.	air c	an be trapped by specialised underwater leaves;		
		20.	(sub	merged parts of plant) carry out anaerobic respiration;		
		21.	prod	luce ethanol;		
		22.	can	tolerate high concentrations of ethanol;		
		23.	prod	luce a lot of ethanol dehydrogenase;		[8 max]
						[Total: 15]