

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

217961911

COMBINED SCIENCE

0653/41

Paper 4 Theory (Extended)

May/June 2020

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) Table 1.1 shows the percentage composition of the gases in inspired air and in expired air.

Table 1.1

gas	percentage composition of inspired air	percentage composition of expired air
carbon dioxide	0.04	4
nitrogen	78	78
oxygen	21	16

	Exp	lain why the percentage of carbon dioxide is greater in expired air than in inspired air.	
(b)	Stat	te two features of alveoli that make them efficient gas exchange surfaces.	
	1		
	2		[2]
(c)	Fig.	1.1 shows some cells which line the trachea.	
		cilia mucus	
		Fig. 1.1	
	(i)	State the name of cell C as shown in Fig. 1.1.	
			[1]
	(ii)	Describe the roles of cilia and mucus in the protection of the gas exchange system.	
		cilia	
		mucus	

[2]

Describe one effect of tar in tobacco smoke on the gas exchange system.							
[1							
[Total: 8							

2	The	e formula of methanol is CH ₃ OH.	
	(a)	Explain why methanol is not a hydrocarbon.	
	(b)	(i) Complete the dot-and-cross diagram for a molecule of methanol.	נין
		C O	
			[2]
		(ii) Explain why a molecule of methanol contains only covalent bonds.	
	(c)	Methanol is used as a fuel because it burns in oxygen.	
		Complete the equation for the complete combustion of methanol.	
		2CH ₃ OH + + +	[2]

(d) Fig. 2.1 shows the energy level diagram for the complete combustion of methanol.

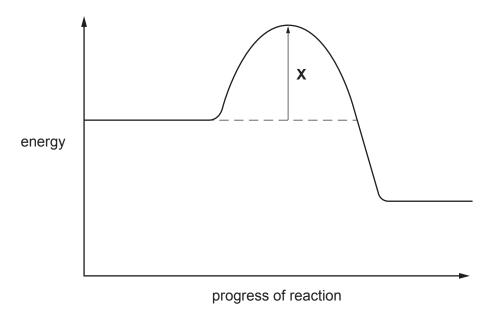


Fig. 2.1

(i) On Fig. 2.1, write the words reactants and products in suitable places. [1]
(ii) State what the energy value X on Fig. 2.1 represents. [1]
(e) During the combustion of methanol, the amount of carbon dioxide in the atmosphere

Suggest one effect of this increase.

increases.

......[1]

[Total: 9]

3 Fig. 3.1 shows a spacecraft taking off from the Moon.

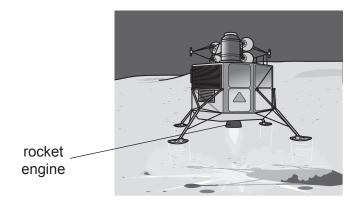


Fig. 3.1

(a)	The total	mass of t	he spacecraft	is 5000 kg.
-----	-----------	-----------	---------------	-------------

(i) The gravitational field strength on the Moon is 1.6 N/kg
--

Calculate the weight of the spacecraft on the Moon.

(ii) The rocket engine pushes the spacecraft vertically upwards with a constant force of 15000 N.

Calculate the work done by the rocket engine to move the spacecraft to a height of 500 m.

(iii) Use your answer to (a)(i) to calculate the gravitational potential energy gained by the spacecraft at 500 m above the Moon's surface.

(iv)	Explain the difference between your answers to (a)(ii) and (a)(iii).
	[1]

(b) Fig. 3.2 shows two large mirrors left behind on the Moon's surface.

The two mirrors are arranged at 90° to each other.

A laser light beam from the Earth can be reflected back to the Earth by the mirrors. This enables the distance between the Earth and the Moon to be measured.

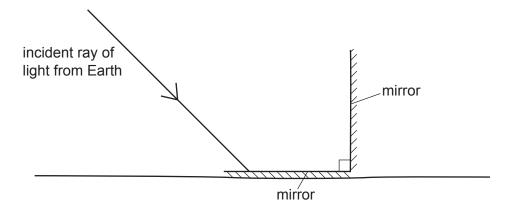


Fig. 3.2

- (i) On Fig. 3.2 complete the ray diagram to show how the ray of light is reflected back parallel to the incident ray. [2]
- (ii) Light takes 2.56s to travel from the Earth to the Moon and back again.

The speed of electromagnetic waves in space is $3.00 \times 10^5 \,\mathrm{km/s}$.

Calculate the distance from the Earth to the Moon.

[2	<u>'</u>]
[2	2

[Total: 10]

4	(a)	If the lig		a shoot tip	is more in	tense on on	e side, the	e shoot shows a	a growth
		Name th	ne response of	the shoot to	_				[41
	(b)		shows a shoot shows how the		enly illumin	ated.		ne side.	[1]
			cells	· C				cells C	
		Fi	ig. 4.1				Fig	j. 4.2	
				an arrow to	show the d	irection of th		ning on the shoot	t. [1]
		(ii) The	e response by	the shoot in F	Fig. 4.2 is s	shown by mo	st plants.		
		Des	scribe the adva	intage of this	s response.				
		 (iii) Des	scribe how cell					. 4.2.	[2]
		(iv) Des	scribe the role			-		hoot shown in Fi	
									[0]

(c) The hormone adrenaline is secreted in humans. Table 4.1 shows some statements about adrenaline.

In Table 4.1 place a tick (✓) to show **two** correct statements about adrenaline.

Table 4.1

statement about adrenaline	tick (✓) if correct
causes pupils of the eye to get smaller	
increases the blood glucose concentration	
increases the pulse rate	
less is secreted when a person is scared	
slows the rate of breathing	

[2]

[Total: 9]

		10
5	(a)	Iron is a transition element.
		State one property of iron that is common to all transition elements but not to other metals.
		[1]
	(b)	Fig. 5.1 shows the arrangement of particles in pure solid iron.
		iron atom
		Fig. 5.1
		(i) Explain why a high temperature is needed to melt solid iron.
		[2]
		(ii) Steel is an alloy of iron. It contains iron atoms and smaller carbon atoms.
		Complete Fig. 5.2 to show the arrangement of atoms in solid steel.
		iron´

Fig. 5.2

atom

[1]

(c)	Iron	is extracted from iron oxide in the blast furnace.
	(i)	The word equation for one of the reactions in the blast furnace is shown.
		iron oxide + carbon monoxide $ ightarrow$ iron + carbon dioxide
		State why this is a redox reaction.
		[2]
	(ii)	Iron(III) oxide contains iron(III) ions, Fe ³⁺ , and oxide ions, O ²⁻ .
		Deduce the formula of iron(III) oxide.
		[1]
	(iii)	Magnesium can be extracted from magnesium oxide by electrolysis.
		Explain why magnesium cannot be extracted from magnesium oxide in a blast furnace.
		[2]
		[Total: 9]

- 6 Naphthalene is a solid that melts at 80 °C to form a liquid.
 - (a) Some solid naphthalene is heated until it has all melted. The liquid is then allowed to cool slowly.

The temperature is measured every minute as the liquid cools and becomes solid again.

Fig. 6.1 shows a graph of the results.

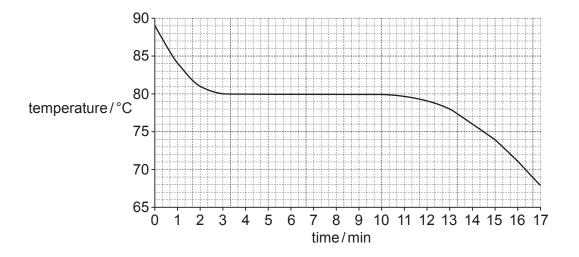
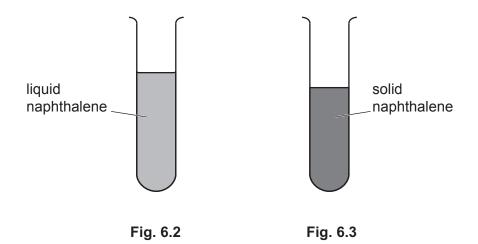



Fig. 6.1

On Fig. 6.1, draw an **X** to show a part of the graph at which all of the naphthalene is liquid. [1]

(b) Fig. 6.2 shows a test-tube with liquid naphthalene at its melting point.

Fig. 6.3 shows the same test-tube with the same mass of naphthalene when it has all turned solid.

(i) Suggest how the distances between the molecules in liquid naphthalene and in solid naphthalene compare.

Give a reason for your answer.

[2]

(ii) Suggest how the motions of the molecules in liquid naphthalene and in solid naphthalene compare.

Give a reason for your answer.

[2]

(c) The solid naphthalene cools very slowly, as the vibrations of the large molecules do not conduct thermal energy well and there are no mobile electrons.

Predict whether solid naphthalene will be a good or poor conductor of electricity.

Give a reason for your answer.

.....

[Total: 6]

7 (a) The substrates and products of three digestive enzymes are shown in Table 7.1.
Complete Table 7.1.

Table 7.1

substrate	digestive enzyme	product
	amylase	sugars
fat		and fatty acids
protein	protease	

	v
- 1	L

(b) State two functions of the	hydrochloric acid ir	ı gastrıc juic	e in the stomach
--	----------------------	----------------	------------------

1	 									
2.	 									

[2]

(c) Fig. 7.1 shows a graph of activity against temperature for two enzymes, ${\bf A}$ and ${\bf B}$.

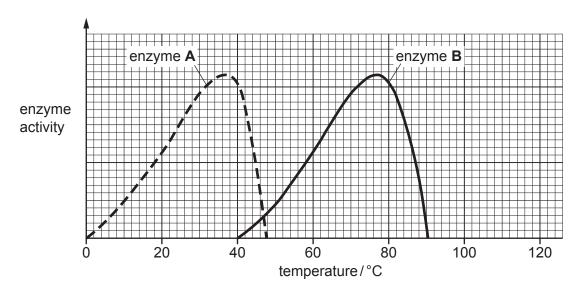


Fig. 7.1

(i) Identify the temperature of maximum activity of enzyme B.

temperature =°C [1]

(ii)	The enzyme activity of both enzymes is the same at 47 °C.	
	The temperature is increased to 50 °C.	
	State and explain the effects of this temperature increase on the activity of enz	yme A .
		[3]
(iii)	Amylase is a digestive enzyme secreted in parts of the alimentary canal.	
	Suggest which enzyme, A or B , is amylase. Give a reason for your answer.	
	enzyme	
	reason	
		[1]
		[Total: 10]

(a)	Wh	en dilute sulfuric acid is electrolysed, hydrogen forms at the cathode.	
	(i)	Describe, in terms of electrons, what happens to one hydrogen ion at the cathode.	
			[2]
	(ii)	State the test for hydrogen gas and give the positive result.	
		test	
		result	 [2]
	(iii)		[4]
	(111)	Name the product at the anode.	[4]
(I-)	Ma		נין
(b)	ivia	gnesium reacts with dilute sulfuric acid to produce magnesium sulfate.	
	Exp	plain why the rate of this reaction increases when the temperature of the acid is higher.	
	Use	e ideas about particles in your answer.	
			[2]
(c)	Nar	me one other substance that reacts with dilute sulfuric acid to produce magnesium sulfat	te.
			[1]
		[Total:	8]

9 Fig. 9.1 shows a microwave oven connected to a mains electricity supply.

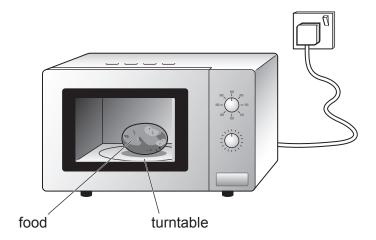


Fig. 9.1

When the door is closed, the oven can be switched on and the food gets hot.

(a)	State the main useful energy transfer that results in the food getting hot.	
	energy → energy	[2

(b) Microwave radiation is generated inside the oven and absorbed by the food.

The microwave radiation has a frequency of 2.45×10^9 Hz.

The speed of microwave radiation is $3.00 \times 10^8 \text{ m/s}$.

Calculate the wavelength of the microwaves.

wavelength = m [2]

(c) When the oven is switched on, the food is rotated on a turntable turned by an electric motor. This ensures the food is heated completely.

All the circuit components of the microwave oven are connected in parallel. These components are the microwave generator, the turntable motor and a lamp.

- (i) The microwave oven has two switches.
 - the main switch operates all the components,
 - the other switch operates only the microwave generator and turntable motor.

On Fig. 9.2 complete the circuit diagram for the microwave oven, including the symbol for the mains electricity supply (a.c. power supply), the second switch and the lamp.

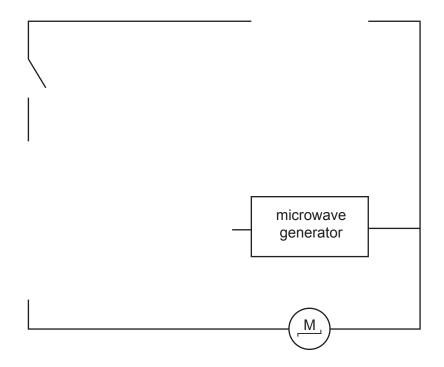


Fig. 9.2

[3]

(ii) The current in each of the three components is shown.

lamp 0.1A microwave generator 2.5A

turntable motor 0.2A

Calculate the current supplied from the mains supply.

current = A [1]

(iii) The mains electricity supply is 230	(iii)	The r	nains	electricity	vlagus	is	230\
---	-------	-------	-------	-------------	--------	----	------

Calculate the power used by the microwave generator.

State the unit of your answer.

[Total: 11]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	III/	2	D ב	helium 4	10	Ne	neon 20	18	Αľ	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	=>				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	П	iodine 127	85	Ą	astatine -			
	>				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ро	polonium	116	_	livermorium -
	>				7	z	nitrogen 14	15	ட	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>.</u>	bismuth 209			
	≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Ъ	lead 207	114	Εl	flerovium -
	=				2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	g	cadmium 112	80	Нg	mercury 201	112	S	copemicium
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
Group											28	Ë	nickel 59	46	Pd	palladium 106	78	五	platinum 195	110	Ds	darmstadtium -
Ģ											27	ဝိ	cobalt 59	45	몬	rhodium 103	77	'n	iridium 192	109	Ħ	meitnerium -
		-]	<u></u>	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium
											25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
					_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	QN	niobium 93	73	Б	tantalum 181	105	Op	dubnium -
						atc	- Fe				22	j	titanium 48	40	ZĽ	zirconium 91	72	Ξ	hafnium 178	104	Ŗ	rutherfordium -
											21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	26	Ba	barium 137	88	Ra	radium -
	_				3	:=	lithium 7	7	Na	sodium 23	19	¥	potassium 39	37	&	rubidium 85	55	S	caesium 133	87	ቷ	francium -

			_			_
7.1	ŋ	lutetium 175	103	۲	lawrencium -	
		ytterbium 173				
69	Tm	thulium 169	101	Md	mendelevium -	
89	Щ	erbium 167	100	Fm	fermium -	
29	웃	holmium 165	66	Es	einsteinium –	
99	ò	dysprosium 163	86	రే	californium	
65	Тр	terbium 159	26	番	berkelium	
64	gg	gadolinium 157	96	CB	curium	
63	En	europium 152	92	Am	americium -	
62	Sm	samarium 150	94	Pu	plutonium	
61	Pm	promethium —	93	Ν	neptunium -	
09	ρN	neodymium 144	92	\supset	uranium 238	
69	ď	praseodymium 141	91	Ра	protactinium 231	
58	Se	cerium 140	06	Ч	thorium 232	
22	Га	lanthanum 139	68	Ac	actinium	,

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).