CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0625 PHYSICS

0625/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0625	31

NOTES ABOUT MARK SCHEME SYMBOLS AND OTHER MATTERS

M marks

are method marks upon which further marks depend. For an M mark to be scored, the point to which it refers must be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent marks can be scored.

B marks

are independent marks, which do not depend on other marks. For a B mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

A marks

A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored. A marks are commonly awarded for final answers to numerical questions. If a final numerical answer, eligible for A marks, is correct, with the correct unit and an acceptable number of significant figures, all the marks for that question are normally awarded. It is very occasionally possible to arrive at a correct answer by an entirely wrong approach. In these rare circumstances, do not award the A marks, but award C marks on their merits. An A mark following an M mark is a dependent mark.

C marks

are compensatory marks in general applicable to numerical questions. These can be scored even if the point to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct substitution or working which shows he knew the equation, then the C mark is scored. A C mark is not awarded if a candidate makes two points which contradict each other. Points which are wrong but irrelevant are ignored.

brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g.10 (J) means that the mark is scored for 10, regardless of the unit given.

underlining indicates that this must be seen in the answer offered, or something very similar.

OR/or

indicates alternative answers, any one of which is satisfactory for scoring the mark.

e.e.o.o.

means "each error or omission".

o.w.t.t.e.

means "or words to that effect".

Ignore

indicates that something which is not correct or irrelevant is to be disregarded and does not cause a right plus wrong penalty.

Spelling

Be generous about spelling and use of English. If an answer can be understood to mean what we want, give credit. However, beware of and do not allow ambiguities, e.g. spelling which suggests confusion between reflection/refraction/diffraction or thermistor/transistor/transformer.

Not/NOT

indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate i.e. right plus wrong penalty applies.

cao

correct answer only.

AND

indicates that both answers are required to score the mark.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0625	31
•			

ecf

meaning "error carried forward" is mainly applicable to numerical questions, but may in particular circumstances be applied in non-numerical questions. This indicates that if a candidate has made an earlier mistake and has carried an incorrect value forward to subsequent stages of working, marks indicated by ecf may be awarded, provided the subsequent working is correct, bearing in mind the earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but **only** applies to marks annotated ecf.

Significant Figures

Answers are normally acceptable to any number of significant figures ≥ 2 . Any exceptions to this general rule will be specified in the mark scheme.

Units

Deduct one mark for each incorrect or missing unit from an answer that would otherwise gain all the marks available for that answer: maximum 1 per question. No deduction is incurred if the unit is missing from the final answer but is shown correctly in the working. Condone wrong use of upper and lower case symbols, e.g. pA for Pa.

Fractions

Only accept these where specified in the mark scheme.

Page 4		4	Mark Scheme Syl		Paper		
			Cambridge IGCSE – October/November 2015	0625	31		
1	(a)	poi	point marked P (on line or time axis) at $t \ge 2.0 \text{ s}$				
	(b)	(i)	attempt at gradient OR (a =) $\Delta v/t$ OR (v – u)/t OR 240 (–0)/2.0 OR division of correct points on graph 120m/s^2		C1 A1		
		(ii)	suggestion of area (under graph) in words or formula or numbers OR 0.5 (120 + 240) \times 1.0 OR [(120 \times 1.0) + (0.5 \times 120 \times 1.0)] 180 m		C1 A1		
	(c)	ma	ss of sled changes/decreases OR fuel used up		B1		
					[Total: 6]		
2	(a)	(i)	any scalar quantity other than mass		B1		
		(ii)	any vector quantity other than force		B1		
	(b)	500	ma in any form OR (a =) F/m 000/290 000 OR 50/290 0.17 m/s ²		C1 C1 A1		
	(c)	(i)	1 cm: 20 000 N/20 kN		B1		
		(ii)	triangle completed 230 000 N OR 230 kN in range 220 000 N – 240 000 N/220 kN – 240) kN	B1 B1		
			by calculation: 110° OR by measurement: 108° – 112°		B1		
					[Total: 9]		
3	(a)		o.e.=) mgh OR $75 \times 10 \times 880$.6 × 10^5 J/Nm OR 660 kJ/kNm		C1 A1		
	(b)	(i)	(work =) Fs/Fd OR 220×2800 = 6.2×10^5 J/Nm OR 620 kJ/kNm		C1 A1		
		(ii)	answer to (a) – answer to (b)(i) e.g. (k.e.=) $6.6 \times 10^5 - 6.2 \times 10^5 = 4.0 \times 10^4$ J OR 44 kJ		C1		
			OR $6.6 \times 10^5 - 6.16 \times 10^5 = 4.0 \times 10^4 \text{ J OR } 44 \text{ kJ}$		A1		
	(c)	•	go faster by) reduced air resistance/drag/resistive force to lower centre of mass OR increase stability/balance		B1		
		٠.١	as the second of many second stability is distinct.		[Total: 7]		

Page 5		5	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – October/November 2015	0625	31
4	(a)	c =	$Q/(m\Delta\theta)$		B1
	(b)	(i)	d = m/V in any form OR (m =) Vd OR 0.0036×1000 3.6kg		C1 A1
		(ii)	(E =) Pt OR 8500×60 OR $510~000$ J OR 5.1×10^5 J $\Delta\theta$ = Q/mc OR $\Delta\theta$ = Pt/mc in any form OR $5.1 \times 10^5/(3.6 \times 4200)$ = $34~(^{\circ}C)$		C1 C1 A1
			OR $\Delta\theta$ = P/(mass per second × c) = 8500/[(0.0036/60) × 4200 = 34 (°C)		(C1) (C1) (A1)
			outflow temp = 15 + 33.73 = 49°C		B1
					[Total: 7]
5	(a)	ran suc app any col air air	two of motion of smoke particles: dom/haphazard/unpredictable movement; dden changes of direction/zig-zag motion; pear/disappear from view OR go out of/come into focus; two of conclusions about air molecules: lide with smoke particles OR smoke particles collide with/moved by molecules fast(er); molecules small(er) / light(er); ve randomly;	air molecule	B2 es; B2
	(b)	(i)	1 (the piston) moves to the right/out(wards) / is pushed away2 (the pressure of the gas) remains constant		B1 B1
		(ii)	(pressure of the gas) increases more frequent collisions (of gas molecules) with piston/walls/conta OR (gas molecules) collide with piston/walls/container with great(e		B1 B1

[Total: 8]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015	0625	31

- (a) (in compressions) pressure higher OR molecules/atoms/particles close(r) together/(more) tightly packed
 - (b) (i) $v = f\lambda$ in any form OR ($\lambda = v/f$ OR 340/850 C1 = 0.40 m
 - (ii) distance (of compression A from barrier) = 2.5×0.40 OR 1.0 m time (to reach barrier) = $1/340 = 2.9 \times 10^{-3}$ s OR 2.9 ms A1

OR T (= 1/f) = 1/850 OR
$$0.4/340$$
 OR 1.2×10^{-3} (C1) (moves 2.5 wavelengths:) time = $2.5/850 = 2.9 \times 10^{-3}$ s OR 2.9 ms (A1)

- (c) two circular arcs centred on mid-point of gap in barrier by eye along centre line, arcs separated by the same distance as adjacent compressions approaching barrier B1
- (d) (speed in water) greater OR numerical value greater than 340 m/s B1

[Total: 8]

7 (a) (i) boxes ticked:

enlarged upright virtual

В3

(ii) E marked anywhere to right of lens

- B1
- (iii) magnifying glass(es) or lens/eyepiece of telescope/microscope/binoculars
- B1
- (b) object in correct position and correct size and F in correct position from label or correct ray intersection with axis two correct rays

B1 M1

image between 28 mm and 38 mm from lens and labelled as word or letter

A1

[Total: 8]

8 (a) (Q =) It OR
$$4.1 \times 10^{-5} \times 1.6 \times 10^{7}$$
 C1 = 660 C

(b)
$$(R =) V/I OR 1.3/4.1 \times 10^{-5}$$
 C1
= 32 000 Ω OR 32 k Ω A1

	age	•	Cambridge IGCSE – October/November 2015	0625	31
	(c)	OR OR	method: (P =) IV OR $4.1 \times 10^{-5} \times 1.3$ 2nd method: (P =) I ² R OR $(4.1 \times 10^{-5})^2 \times 32000$ 3rd method: (P =) V ² /R OR $1.3^2/32000$ 4th method: (P =) QV/t OR $660 \times 1.3/1.6 \times 10^7$		C1
			and 3rd methods: $5.3 \times 10^{-5} W/0.000053 W$ and 4th methods: $5.4 \times 10^{-5} W/0.000054 W$		A1
					[Total: 6]
9	(a)	(ste	ep-down) transformer		B1
	(b)	ma field e.m	ernating current causes) magnetic field in core/iron gnetic field changes/alternates d cuts/links with secondary coil OR secondary coil cuts field n.f. /voltage induced (and current flows in lamp) induced current (in lamp)		B1 B1 B1
	(c)	(i)	V_1/V_2 = N_1/N_2 in any form OR (N ₁ =) $N_2 \times V_1/V_2$ OR 450 \times 240/12 = 9000		C1 A1
		(ii)	tick 4 th box		B1
					[Total: 8]
10	(a)	(i)	OR (gate)		B1
		(ii)	1 input and 1 output labelled <u>with words</u>		B1
		(iii)	correct symbol		В1
	(b)	(i)	needle not deflected		В1
		(ii)	needle not deflected		B1
		(iii)	needle deflected either way		В1
					[Total: 6]

Mark Scheme

Page 7

Syllabus

Paper

				Cambridge IGCSE – October/November 2015	0625	31
11	(a)	diff	different number of neutrons (in the nucleus) OR different neutron number			
	(b)	(i)	1	letter Q at nucleon number = 208 proton number = 81		B1 B1
			2	letter R at nucleon number = 212 proton number = 84		B1 B1
		(ii)		dence of dividing original number by 2 (counts)/min OR 1.25 (counts)/s OR 4500 (counts)/hr		C1 A1
						[Total: 7]

Syllabus

Paper

Mark Scheme

Page 8