

CAMBRIDGE INTERNATIONAL MATHEMATICS

Paper 6 (Extended) MARK SCHEME Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

0607/63

May/June 2016

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2016	0607	63

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

А	INVESTIGATION AREAS AN		O PERIMETERS	
Question		Answer	Marks	Part Marks
1	(a)	30 26	1	
	(b) (i)	6	1	
	(ii)	18	1FT	FT $2 \times (their 6) + 6$
	(c) (i)	7 <i>x</i> oe	1	
	(ii)	14+2x oe isw	1	
	(iii)	2.8 oe	FT1	FT <i>their</i> c(i) and c(ii) if same form C opportunity
2	(a) (i)	xy oe	1	
	(ii)	2x+2y oe	1	
	(b)	xy - 2y = 2x	1	
		y(x-2) = 2x	1	
3	(a)	2.4	1	C opportunity
	(b)	-2	1	C opportunity
	(c)	2 correct curves	2	B1 for each branch
				C opportunity
	(d)	$[0 \leqslant] x \leqslant 2$	1	

	Page 3	3 Mark Scheme Cambridge IGCSE – May/June 2016		SyllabusPaper060763
	Question	Answer	Marks	Part Marks
4	(a)	xy < 2x + 2y xy - 2y < 2x y(x-2) < 2x	1	
	(b) (c)	Point clearly between x-axis, $x = 2$ and curve Valid check using co-ordinates where Area < Perimeter	1 1	Not dependent on (b)
5		[Yes,] showing solution of 6	1	C opportunity
Communication in 2 from 1(c)(iii), 3(a), 3(b), 3(c) or 5		1		

Mark Scheme Cambridge IGCSE – May/June 2016

B MODELLING HOW MUCH GRASS CAN THE GOAT EAT?			E GOAT EAT?	
	Question	Answer	Marks	Part Marks
1		314 or 314.1	1	
2	(a)	236 or 235.6	1FT	FT $\frac{3}{4}$ (<i>their</i> 314) C opportunity
	(b)	Quarter circle shown on diagram or 5m radius implied	1	
3	(a)		1	 A ³/₄ circle and a ¹/₄ circle of smaller radius C opportunity
	(b)	$236 + \pi$ oe or 238.8 or 238.76	2FT	FT <i>their</i> 2(a) M1 for $\frac{1}{4} \times \pi \times 2^2$ oe C opportunity
4	(a) (i)	0< <i>x</i> <8	2	B1 for each limit
	(ii)	$\frac{3}{4}\pi x^2$ oe	1	
	(b) (i)	8< <i>x</i> <15	2	B1 for each limit
	(ii)	$\frac{3}{4}\pi x^2 + \frac{1}{4}\pi (x-8)^2$ oe isw	2FT	FT their (a)(ii) M1 for $+\frac{1}{4}\pi k^2$
	(c) (i)	$(their (b)(ii)) + \frac{1}{4}\pi(x-15)^2$	2FT	FT <i>their</i> (b)(ii) M1 for <i>(their</i> (b)(ii)) + $\frac{1}{4}\pi k^2$ or $+\frac{1}{4}\pi (x-15)^2$ C opportunity

Page 5	Page 5 Mark Scheme		Syllabus Paper
	Cambridge IGCSE – May/Ju	ine 2016	0607 63
Question	Answer	Marks	Part Marks
(ii) (d)	16.5 [m] 14.1 [m]	1FT 2	FT any model including a term in $(x-a)^2$ C opportunity M1 for attempt at solving with 500 in any model including a term in $(x-a)^2$ C opportunity
Communication in 3 of 2(a), 3(a), 3(b), 4(c)(i), 4(c)(ii) or 4(d)		2	C1 if seen in 2 of these