

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
*			
μ	CAMBRIDGE II	NTERNATIONAL MATHEMATICS	0607/22
ω	Paper 2 (Extend	ded)	October/November 2015
0 0			45 minutes
0	Candidates ans	swer on the Question Paper.	
* 5 1 3 8 6 2 6 4 2 7	Additional Mate	erials: Geometrical Instruments	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

Do not use staples, paper clips, glue or correction fluid.

You may use an HB pencil for any diagrams or graphs.

DO **NOT** WRITE IN ANY BARCODES.

Answer all the questions.

CALCULATORS MUST NOT BE USED IN THIS PAPER.

All answers should be given in their simplest form.

You must show all the relevant working to gain full marks and you will be given marks for correct methods even if your answer is incorrect.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 40.

This document consists of 8 printed pages.

Formula List

For the equation	$ax^2 + bx + c = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Curved surface area, A, of c	ylinder of radius <i>r</i> , height <i>h</i> .	$A = 2\pi rh$
Curved surface area, A, of c	one of radius <i>r</i> , sloping edge <i>l</i> .	$A = \pi r l$
Curved surface area, A , of spectrum of	phere of radius <i>r</i> .	$A = 4\pi r^2$
Volume, <i>V</i> , of pyramid, base	e area A , height h .	$V = \frac{1}{3}Ah$
Volume, <i>V</i> , of cylinder of ra	dius r, height h.	$V = \pi r^2 h$
Volume, V, of cone of radius	s r, height h.	$V = \frac{1}{3}\pi r^2 h$
Volume, V, of sphere of radi	us <i>r</i> .	$V = \frac{4}{3}\pi r^3$
\bigwedge^A		$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
c b		$a^2 = b^2 + c^2 - 2bc\cos A$
		Area $=\frac{1}{2}bc\sin A$
B a	C	

Answer **all** the questions.

1	(a)	Work out	$16-8 \div 2 + 2 \times 4.$		
				<i>Answer(a)</i> [1]	
	(b)	Work out	$(8 \times 10^{-4}) \times (2 \times 10^{-3}),$	giving your answer in standard form.	

2 Solve.

(a) 2x - 3(1 - 4x) = 2(11 - 3x)

 $Answer(a) x = \dots [3]$

(b) |4x-3| = 11

 $Answer(b) x = \dots [2]$

3 x varies as the square of y. When y = 4, x = 32.

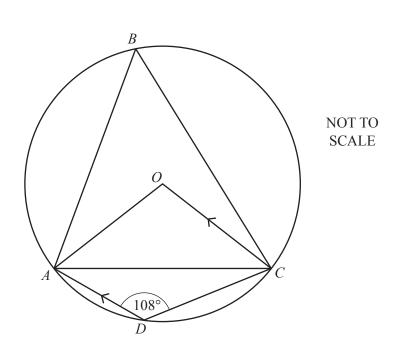
Find x when y = 5.

Answer $x = \dots [3]$

5
$$\mathbf{a} = \begin{pmatrix} 5 \\ -12 \end{pmatrix}$$
 $\mathbf{b} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$
(a) Find $\mathbf{a} - 3\mathbf{b}$.
(b) Work out $|\mathbf{a}|$.
(c) (2)

6 Factorise.

(a) 8ax - by + 2ay - 4bx


(b) $3x^2 - 5x - 12$

7 (a) Find the value of 6^0 .

(b) Write 5^{-2} as a fraction.

Answer(b)[1]

8

- A, B, C, and D lie on a circle, centre O.
- AD is parallel to OC and angle $ADC = 108^{\circ}$.

Find

(a) angle *ABC*,

 Answer(a)
 [1]

 (b) angle AOC,
 Answer(b)
 [1]

 (c) angle OCA,
 Answer(c)
 [1]

 (d) angle DAC.
 Answer(d)
 [1]

9	In triangle <i>ABC</i> ,	$AB = \sqrt{48}$ cm,	$AC = 8$ cm and angle $ABC = 90^{\circ}$.
	Find		

(a) *BC*,

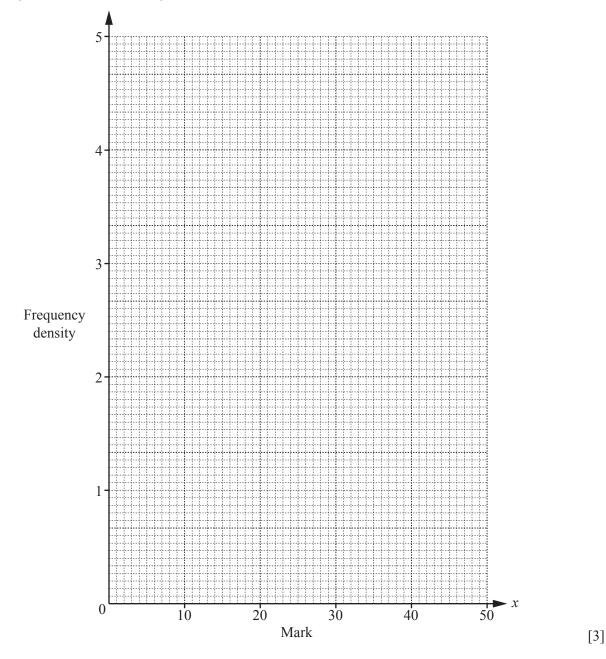
Answer(a) cm [3]

(b) angle *BAC*.

10 The graph of $y = (x - h)^2 + k$ has a vertex at (2, -3).

Find the value of *h* and the value of *k*.

Answer $h = \dots$


k =[2]

Question 11 is printed on the next page.

11 The table shows the marks of 70 students in an examination.

Mark (<i>x</i>)	Frequency
$0 < x \le 10$	8
$10 < x \le 15$	16
$15 < x \le 20$	20
$20 < x \le 30$	12
$30 < x \le 50$	14

On the grid below, draw a histogram to show this information.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.