Cambridge
IGCSE

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/61
Paper 6 (Extended)
May/June 2015
1 hour 30 minutes
Candidates answer on the Question Paper.
Additional Materials: Graphics Calculator

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
Do not use staples, paper clips, glue or correction fluid.
You may use an HB pencil for any diagrams or graphs.
DO NOT WRITE IN ANY BARCODES.

Answer both parts A and \mathbf{B}.
You must show all the relevant working to gain full marks for correct methods, including sketches. In this paper you will also be assessed on your ability to provide full reasons and communicate your mathematics clearly and precisely.
At the end of the examination, fasten all your work securely together.
The total number of marks for this paper is 40 .

Answer both parts A and B.

A INVESTIGATION

STAIRCASES (20 marks)

You are advised to spend no more than 45 minutes on this part.
This investigation looks at the number of cubes that make different types of staircase.
1 This is an UP staircase of height 3 made using 6 cubes.
It is a 3 -step UP staircase because it has a height of 3 cubes.

(a) Write down the number of cubes that make an UP staircase of height 2.
(b) On the grid below draw an UP staircase of height 4.

(c) Complete the table for the number of cubes that make these UP staircases.

Height	1	2	3	4	5	6
Number of cubes	1		6			

(d) Find an expression, in terms of n, for the number of cubes that make an UP staircase of height n.
(e) Find how many cubes make an UP staircase of height 10.

2 This is an UP AND DOWN staircase of height 3 made using 9 cubes.
It is a 3 -step $U P$ AND DOWN staircase because it has a height of 3 cubes.

(a) Find how many cubes make an UP AND DOWN staircase of height 4.
(b) Complete the table for the number of cubes that make these $U P$ AND DOWN staircases.

Height	1	2	3	4	5	6
Number of cubes	1		9			

(c) Find an expression, in terms of n, for the number of cubes that make an UP AND DOWN staircase of height n
(d) Find how many cubes make an UP AND DOWN staircase of height 10 .

3 This is a DOUBLE staircase of height 3 made using 12 cubes.
It is a 3-step $D O U B L E$ staircase because it has a height of 3 cubes.

(a) Complete the table for the number of cubes that make these DOUBLE staircases.

Height	1	2	3	4	5	6
Number of cubes	2		12			

(b) Find an expression, in terms of n, for the number of cubes that make a DOUBLE staircase of height n.
(c) Find how many cubes make a DOUBLE staircase of height 10 .
(d) Find the height of a $D O U B L E$ staircase made from 240 cubes.

4 This is a sequence of MULTIPLE staircases of heights 1,2 and 3.
These are MULTIPLE staircases because, for each staircase, the width, the height and the depth are the same.

(a) Complete the table for the number of cubes that make these MULTIPLE staircases.

Height	1	2	3	4	5	6
Number of cubes	1	6	18			

(b) Find an expression, in terms of n, for the number of cubes that make a MULTIPLE staircase of height n.

5 There are 1800 cubes available.
Use your expressions in questions $\mathbf{1 (d) , 3 (b)}$ and $\mathbf{4 (b)}$ to complete the table.

Type of staircase	Maximum height using 1800 cubes	Number of cubes left over
UP	42	
UP AND DOWN		36
DOUBLE		
MULTIPLE		

B MODELLING

BOAT TRIPS (20 marks)

You are advised to spend no more than 45 minutes on this part.
A boat travels up and down a river.
The time taken for a journey depends on the speed of the boat and the speed of the water current.

1 In this model the water is still and so the speed of the water current is zero km / h. The speed of the boat in still water is $15 \mathrm{~km} / \mathrm{h}$.
(a) Find how many minutes it will take for the boat to travel 10 km .
\qquad \min
(b) The boat travels for 24 minutes.

Find the distance that it travels.
\qquad

When a boat travels against the current it goes in exactly the opposite direction to the current.

When a boat travels with the current it goes in exactly the same direction as the current.

2 In this model the water is not still.
The speed of the water current is $2 \mathrm{~km} / \mathrm{h}$.
The speed of the boat in still water is $15 \mathrm{~km} / \mathrm{h}$.
(a) Show that it will now take the boat approximately 46 minutes to travel 10 km against the current.
(b) The boat travels for 20 minutes against the current. Find the distance it travels.
(c) How far will the boat travel in 46 minutes with the current?
\qquad

3 The boat travels 20 km up the river before returning to where it started.
The speed of the water current is $2 \mathrm{~km} / \mathrm{h}$.
The speed of the boat in still water is $v \mathrm{~km} / \mathrm{h}$.
(a) (i) Find a model for the total travelling time, T hours, for this whole journey.

$$
T=
$$

\qquad
(ii) Show that your model simplifies to $T=\frac{40 v}{v^{2}-4}$.
(iii) Sketch the graph of $T=\frac{40 v}{v^{2}-4}$ for $0 \leqslant v \leqslant 20$.

(iv) The model is only appropriate for $v>k$.

Find the value of k and give a practical reason why k must have this value.
$k=$ \qquad because
\qquad
(b) When the speed of the boat in still water is $18 \mathrm{~km} / \mathrm{h}$, find the time taken for the whole journey.
\qquad hours
(c) The return journey takes the boat 3 hours. Find the speed of the boat in still water.
\qquad km/h

4 The boat travels 20 km up the river before returning to where it started.
The speed of the boat in still water is $v \mathrm{~km} / \mathrm{h}$.
A whole journey takes the boat 3 hours.
(a) (i) Adjust the model in question 3(a)(ii) for a water current of $3 \mathrm{~km} / \mathrm{h}$.

$$
T=
$$

\qquad
(ii) Find the speed of the boat in still water.
\qquad
(b) The speed of the boat in still water is now $15 \mathrm{~km} / \mathrm{h}$.

Adjust the model in question 3(a)(ii) and find the speed of the water current.
\qquad

5 (a) There is a change in the boat's journey.
Explain how the journey has changed when the model in question 3(a)(ii) becomes

$$
T=\frac{80 v}{v^{2}-4}
$$

(b) Describe fully the single transformation that maps the graph of $T=\frac{40 v}{v^{2}-4}$ onto the graph of $T=\frac{80 v}{v^{2}-4}$.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

