MARK SCHEME for the May/June 2015 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/42 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0607	42

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

nfww not from wrong working soi seen or implied

1	(a) (i)	40 000	3	M2 for 76 000 ÷ 1.9 oe or M1 for 76 000 = 190% oe soi
	(ii)	521 284 cao	3	M2 for 76 000 × 1.9 ³ or 40 000 × 1.9 ⁴ oe or M1 for 76 000 (or <i>their</i> 40 000) × 1.9 ^k , $k \neq 1$ oe seen
	(b)	2035	2	M1 for 76 000 (or <i>their</i> (a)(i) or <i>their</i> (a)(ii)) × 1.9^k = (or > or \ge) 10 000 000 seen $k \ne 1$ or evidence of at least 2 correct trials
2	(a)	Rotation [Anticlockwise] 90° oe [About] (0, 0) oe	1 1 1	Combinations of transformations – lose all 3 marks
	(b)	$\begin{pmatrix} 7\\k \end{pmatrix}$	1	any k
		$y = \frac{1}{2}k + 3$	1	Must be $\frac{1}{2}$ their k from vector
	(c)	Triangle at (1, 2), (2, 2), (1, 6)	2	SC1 for stretch s.f. 2 with $y = 1$ invariant or triangle at (2, 1), (4, 1), (2, 3) i.e. <i>y</i> -axis invariant
3	(a)	82.8 or 82.83	3	B1 for 9 h 25 m oe or 9.417 oe or 565 [min] M1 for 780 ÷ 9.416 (or <i>their</i> 9 h 25m converted to h)
	(b)	58.2 or 58.23 to 58.24 cao	3	M1 for 520 ÷ 105
				M1 for <i>their</i> 9.41666 – <i>their</i> (520 ÷ 105) or for <i>their</i> 565 – <i>their</i> 520 ÷ 105 × 60
	(c)	99.96 cao	4	M2 for $\frac{520}{100} \times 6 + \frac{their 260}{100} \times 8$ soi by 52 or $31.2 + 20.8$
				or M1 for either, soi by 31.2 or 20.8
				M1 for <i>their</i> 52 × 1.63 soi by 84.76

	Page 3	Mark Scheme		Syllabus	Paper	
		Cambridge IGCSE –	May/Ju	ne 2015	0607	42
			1	r		
4	(a)	Good curve with x intercept				
		reasonably placed and maximum				
		reasonably placed on y-axis and				
		minimum in 1st quadrant				
		25 ∓ γ (αν→ν*3, 3γ*2+6	2	B1 for basic cubic shape	(max before	min)
		20 V (<u>(()) × 1 × 2 × 1</u>)				
		20-				
		15				
		10				
		5				
		x				
		-5-				
		-10				
		o -15-				
	(h)	(0, 6)	1	SC1 if answers reversed		
	(0)	(0,0) (2,2)	1			
	(c)	2 < k < 6	2FT	FT <i>their y</i> values from (b)	
				SC1 for $2 \le k \le 6$. (
				or for $2 \le k \le n$ or $n \le k \le k$	- 6 - 6	
				or for $2 \le x \le 6$	< 0	
	(d)	Rotational	1			
		[Order] 2	1			
		[About] (1, 4)	1			
	(e)	$r^{3} - 3r^{2} + 4$ or $(r - 2)(r - 2)(r + 1)$	1			
		x = 3x + 101 (x = 2)(x = 2)(x + 1)				
5	(a)	5 points plotted correctly	2	B1 for 3 or 4 correct		
	(b)	Positive	1	Ignore comments on strer	ngth	
				6	6	
	(c) (i)	63.6	1			
	(ii)	42	1	Accept 42 000		
	(d)	1.04x - 24.4	2	or $a = 1.044, b = -24.4$	1 to -24.40	
				B1 for $y = ax + b$ with either	ther <i>a</i> or <i>b</i> co	orrect
				or SC1 for [1.[0]] <i>x</i> – 24		
	(e)	58 800 or 58 790 to 59 150	1FT	FT from <i>their</i> equation		
			11'1			

	Page 4	Mark Sch	Syllabus	Paper		
		Cambridge IGCSE –	May/Ju	ne 2015	0607	42
6	(a)	150	2	M1 for $\sqrt{120^2 + 90^2}$		
	(b)	$\tan^{-1}\frac{90}{120}$ oe	M1	i.e. trig ratio for any appro	opriate angle	
		53.13 or 36.86 to 36.87 or 106.26	A1	or M1 [cos =] $\frac{150^2 + 15}{2 \times 150}$	$\frac{0^2 - 180^2}{0 \times 150}$	A1 0.28 oe
		73.739	A1			
	(c)	25 300 or 25 270 to 25 281	3	M2 for $\frac{73.74}{360} \times \pi \times 150^2 + 2 \times \frac{1}{2} \times 120 \times 90$ oe		×90 oe
				M1 for $\frac{73.74}{360} \times \pi \times 150^2$	or $2 \times \frac{1}{2} \times 120$	0×90 oe
	(d)	6.74 to 6.75 or 7	3	M2 for <i>their</i> (c) \times 8 \times 2 \div	60 000 oe	
				or M1 for <i>their</i> (c) \times 8 \times 2 or <i>their</i> (c) \times 8 \div 60 000 c	2 ÷ figs 6 or <i>their</i> (c) ×	2 ÷ 60 000
7	(a)	x = -1 ruled y = 2 ruled	1 1			
		y = 2x - 3 ruled	2	B1 for line with gradient	2 or <i>y</i> -interce	ept –3
		3x + 5y = 30 ruled	2	B1 for line with negative or through (10, 0)	gradient thro	ough (0, 6)
		Correct region clearly indicated cao	1			
	(b) (i)	6.5 to 6.7 cao	1			
	(ii)	7.2 to 7.6 cao	1			
8	(a) (i)	Any counted information	1	e.g. numbers in family, no delivered, shoe sizes, man cats, etc.	umbers of let ks in a test, i	ters number of
	(ii)	Any measured information	1	e.g. lengths, ages, masses	, heights	
	(b) (i)	160 165	1			
	(ii)	165 170	1			
	(iii)	166	2	M1 for at least 3 midpoin	ts soi	
	(iv)	Continuous information oe	1	e.g. lowest/highest anywh using mid-points, grouped unknown, examples of va	here between d data, actual lues in an in	150 and 155, heights terval

[Page 5	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE – May/June 2015		0607	42	
9	(a) (i)	$ \frac{4}{10}, \frac{2}{10}, \frac{4}{10} \\ \frac{5}{11}, \frac{2}{11}, \frac{4}{11} \\ \frac{5}{10}, \frac{2}{10}, \frac{3}{10} $	1 1 1			
	(b) (i)	$\frac{4}{121}$ oe	2	M1 for $\frac{2}{11} \times their \frac{2}{11}$		
	(ii)	$\frac{32}{110}$ oe	3	M2 for $\frac{5}{11} \times their \frac{4}{10} + \frac{4}{11}$	\times their $\frac{3}{10}$ oe	
	(iii)	$\frac{189}{605}$ oe	3	or M1 for one of above prextras M2 for $\frac{5}{11} \times their \frac{2}{10} + \frac{2}{11}$ $their \frac{4}{11} + \frac{4}{11} \times t$	roducts with $\frac{5}{1} \times their \frac{5}{11} + their \frac{2}{10}$ oe	but incorrect $\frac{2}{11} \times$
				or M1 for 2 of above proof or one of $\left(\frac{5}{11} + \frac{4}{11}\right) \times their \frac{2}{10}, \frac{2}{10}$	ducts $\frac{1}{1} \times \left(their \frac{5}{11} \right)$	+ their $\frac{4}{11}$
10	(a)	Correct curve with no overlaps at 60 and 240, x intercepts at approximately -30, 150, 330	3	 B2 for 'correct' but with or intercepts B1 for 1 branch correct 	verlaps and/	or inaccurate
	(b)	38.2 or 38.19 to 38.2 218 or 218.1 to 218.2	1 1			
	(c)	$ \begin{array}{l} x = 60 \\ x = 240 \end{array} $	1 1			

	Page 6	Mark Scheme				Paper	
		Cambridge IGCSE –	May/Ju	ne 2015	0607	42	l
	(d)	their (a) with negative y parts reflected in x-axis	2FT	B1FT for 1 branch correc	ʻt		
11	(a) (i) (ii)	117 or 116.8 42.4 or 42.36 to 42.37	4	M2 for sin $[\theta] = \frac{70 \sin 35}{45}$ or M1 for $\frac{\sin [\theta]}{70} = \frac{\sin 3}{45}$ M1 for $180 - their \theta$ M2 for $[\cos[\theta]] = \frac{70^2 + 2}{2 \times 3}$ or M1 for $55^2 = 70^2 + 80^2$ A1 for 0.739 or 0.7388 $\frac{331}{448}$	$\frac{5}{2} \text{ oe}$ $\frac{5}{2} \text{ oe}$ $\frac{80^2 - 55^2}{70 \times 80}$ $\frac{2}{2} - 2 \times 70 \times 80$ or $\frac{8275}{11200}$ or	$0 \times \cos[\theta]$ = $\frac{1655}{2240}$ or	
	(b)	21.1 to 21.3	2FT	M1 for 45sin(145 – <i>their</i>	(a)(i)) oe		
12	(a)	4 nfww	2	B1 for $\frac{6}{4+1}$ oe seen or N	11 for $5\left(\frac{e}{4x}\right)$	$\left(\frac{5}{+1}\right) - 2$	
	(b) (i)	$\frac{6}{20x-7}$ final answer	2	M1 for $\frac{6}{4(5x-2)+1}$			
	(ii)	$\frac{x+2}{5}$ of final answer	2	M1 for $y + 2 = 5x$ or $x = 5$ or better	$5y - 2 \text{ or } \frac{y}{5} =$	$=x-\frac{2}{5}$	
	(c) (i)	$\frac{1}{x+1}$ final answer	3	M2 for $\frac{5x-2}{(5x-2)(x+1)}$ of or M1 for $\frac{5x-2}{(5x+a)(x+b)}$ or $a + 5b = 3$ or SC1 for $(5x-2)(x+1)$	oe where <i>a</i>	b = -2	

Page 7	Mark Scheme		Paper
	Cambridge IGCSE – Mav/June 2015	0607	42

	(ii)	$\frac{26x-13}{(4x+1)(5x-2)}$ oe final answer	3	M1 for common denominator $(4x + 1)(5x - 2)$ soi M1 for $6(5x - 2) - (4x + 1)$ oe
13	(a)	ABF = DEF (alternate angles) BAF = EDF (alternate angles) AFB = DFE ([vert] opposite angles)	1+1	One mark for first fully correct and one for second fully correct. or B1 for any 2 pairs of angles <u>identified</u> without a reason or with an incorrect reason
	(b) (i)	4.8 oe	3	<u>Method 1</u> Triangles <i>ABF</i> , <i>CEB</i> [where $x = AB$] M2 for $\frac{10}{6} = \frac{8}{x}$ oe or M1 for $\frac{BC}{AF} = \frac{EC}{AB}$ oe <u>Method 2</u> Triangles <i>ABF</i> , <i>DEF</i> [where $x = AB$] M2 for $\frac{8-x}{x} = \frac{4}{6}$ oe or M1 for $\frac{FD}{AF} = \frac{ED}{AB}$ oe <u>Method 3</u> Triangles <i>EFD</i> , <i>EBC</i> [where $y = ED$] M2 for $ED = 3.2$ or M1 for $\frac{BC}{ED} = \frac{EC}{ED} \left[= \frac{10}{4} = \frac{8}{y} \right]$ oe
	(ii)	$\frac{4}{9}$ oe	1	
	(iii)	$\frac{4}{30}$ oe	2	M1 for Area of $ABF = \frac{3}{10}$ Area of $ABCD$ or ratio of EFD to $EBC = 4$: 25 oe soi or correct use of $\frac{1}{2}ab\sin C$ or e.g. $\frac{\frac{1}{2} \times theirED \times 4}{10 \times theirDC}$