

Cambridge IGCSE™

ADDITIONAL MATHEMATICS

Paper 2 MARK SCHEME Maximum Mark: 80 0606/22 February/March 2024

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FŤ	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
	· · · · · · · · · · · · · · · · · · ·

soi	seen	or	implied
-----	------	----	---------

Question	Answer	Marks	Partial Marks
1(a)	8 - 4x = 10 oe soi and 8 - 4x = -10 oe soi OR $16x^2 - 64x - 36[=0]$ oe	M1	
	$x = -\frac{1}{2}, \ x = \frac{9}{2}$	A2	mark final answer A1 for $x = -\frac{1}{2}$ or $x = \frac{9}{2}$
1(b)	$-30x^2 + 105x - 75$ [*0] oe where * is any inequality sign or =	M1	condone one sign or arithmetic error
	Critical values 2.5 and 1	2	M1 for factorises or solves a 3-term quadratic to find critical values
	$x < 1 \ x > 2.5$	A1	mark final answer

0606/22

Question	Answer	Marks	Partial Marks
2	$\frac{a+b\sqrt{5}}{1+7\sqrt{5}} = \frac{20}{4+2\sqrt{5}} \text{ or } \frac{20(1+7\sqrt{5})}{4+2\sqrt{5}} \text{ oe, soi}$	B1	
	$[20\times] \frac{1+7\sqrt{5}}{4+2\sqrt{5}} \times \frac{4-2\sqrt{5}}{4-2\sqrt{5}}$ or $[10\times] \frac{1+7\sqrt{5}}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$ oe	M1	condone one slip providing it is not in the rationalisation factor
	$\frac{20(28\sqrt{5} - 70 + 4 - 2\sqrt{5})}{16 - 20}$ or $\frac{10(14\sqrt{5} - 35 + 2 - \sqrt{5})}{4 - 5}$ oe	A1	
	a = 330 and $b = -130$ oe, nfww	A1	
	Alternative method		
	$\frac{a+b\sqrt{5}}{1+7\sqrt{5}} = \frac{20}{4+2\sqrt{5}}$ oe, soi	(B 1)	
	Cross multiplies and multiplies out: $20+140\sqrt{5} = 4a+4b\sqrt{5}+2a\sqrt{5}+10b$	(M1)	condone one sign or arithmetic error
	Correct pair of simultaneous equations 4a + 10b = 20 oe $2a + 4b = 140$ oe and solves for $a = 330$ or $b = -130$	(A1)	
	a = 330 and $b = -130$ oe, nfww	(A1)	
3(a)	$\frac{3}{4}\mathbf{a} + \frac{1}{4}\mathbf{b}$ or equivalent simplified expression	B2	B1 for $\mathbf{a} + \frac{1}{4}(\mathbf{b} - \mathbf{a})$ or $\mathbf{b} + \frac{3}{4}(\mathbf{a} - \mathbf{b})$ oe or for $3(\overrightarrow{OP} - \mathbf{a}) = \mathbf{b} - \overrightarrow{OP}$ oe

Question	Answer	Marks	Partial Marks
3(b)	$\mathbf{q} = \begin{pmatrix} 24\\ -12 \end{pmatrix}$ oe	2	M1 for $12\sqrt{5} \times \frac{1}{\sqrt{6^2 + (-3)^2}} \begin{pmatrix} 6 \\ -3 \end{pmatrix}$ oe, soi
	$\mathbf{r} = \begin{pmatrix} -15\\15 \end{pmatrix}$ oe	2	M1 for $15\sqrt{2} \times \frac{1}{\sqrt{(-5)^2 + 5^2}} \begin{pmatrix} -5\\5 \end{pmatrix}$ oe, soi
			If M0 M0, then SC1 for the unit direction vectors $\frac{1}{\sqrt{45}} \begin{pmatrix} 6 \\ -3 \end{pmatrix}$ or better
			and $\frac{1}{\sqrt{50}} \begin{pmatrix} 5 \end{pmatrix}$ or better
	$\left \mathbf{q}+\mathbf{r}\right = \left \binom{9}{3}\right = \sqrt{9^2 + 3^2}$	M1	FT <i>their</i> $(\mathbf{q} + \mathbf{r})$ providing at least M1 previously awarded
	[unit vector in direction $\mathbf{q} + \mathbf{r} = \frac{1}{\sqrt{90}} \begin{pmatrix} 9\\ 3 \end{pmatrix}$ oe, isw	A1	
4(a)(i)	$\frac{dy}{dx} = 6\sin x \cos x - \sin x$ oe, isw	B2	B1 for an attempt to differentiate both terms with one term correct
	$3\sin^2 x + \cos x + \frac{\cos x}{\sin x} (6\sin x \cos x - \sin x)$	M1	FT their $\frac{dy}{dx}$ of the form $k \sin x \cos x \pm \sin x$
	Correct simplified step e.g. $3\sin^2 x + \cos x + 6\cos^2 x - \cos x$ or $3\sin^2 x + 6\cos^2 x$ or $3 + 3\cos^2 x$	A1	
	leading to $3(1 + \cos^2 x)$ nfww		
4(a)(ii)	$\cos^2 x = \frac{1}{3}$	M1	FT <i>their</i> k providing $0 < k \le 4$
	$\cos x = [\pm] \sqrt{\frac{1}{3}} \text{ oe}$	M1	dep on previous M1; FT their k
	± 0.955 or $\pm 0.9553[1]$ rot to 4 or more sf ± 2.19 or $\pm 2.186[2]$ rot to 4 or more sf	A2	and no other angles in range A1 for any two correct angles, ignoring extras

Question	Answer	Marks	Partial Marks
4(b)(i)	$\left(1-\frac{1}{2}x^{-\frac{1}{2}}\right)$ sec ² $\left(x-\sqrt{x}\right)$ oe, isw	2	M1 for $f(x)\sec^2(x-\sqrt{x})$
4(b)(ii)	Correctly writes $\left(1 - \frac{1}{2}x^{-\frac{1}{2}}\right) \sec^{2}(x - \sqrt{x}) = \frac{2\sqrt{x} - 1}{2\sqrt{x}} \sec^{2}(x - \sqrt{x}) \text{ or } \frac{2\sqrt{x} - 1}{2\sqrt{x}\cos^{2}(x - \sqrt{x})}$ and	M1	where <i>k</i> is a non-zero constant; dependent on part (b)(i)
	states an answer $k \tan(x - \sqrt{x})$ or states $\frac{1}{2} \int \frac{2\sqrt{x} - 1}{\sqrt{x} \cos^2(x - \sqrt{x})} dx = \tan(x - \sqrt{x})$		
	$2\tan(x-\sqrt{x})+c$ nfww	A1	
5	Correct quotient rule: $\frac{dy}{dx} = \frac{(\ln 3x)[1] - x\left(\frac{1}{3x} \times 3\right)}{(\ln 3x)^2} \text{ oe}$ OR correct product rule using $y = x(\ln 3x)^{-1}$: $\frac{dy}{dx} = x\left(-(\ln 3x)^{-2} \times \frac{3}{3x}\right) + [1](\ln 3x)^{-1}$	2	M1 for $\frac{dy}{dx} = \frac{(\ln 3x)[1] - x \times their\left(\frac{1}{3x} \times 3\right)}{(\ln 3x)^2} \text{ OR}$ for $\frac{dy}{dx} = x \times their\left(-(\ln 3x)^{-2} \times \frac{3}{3x}\right)$ +[1](ln 3x)^{-1}
	$\frac{\delta y}{h} = \frac{\ln 3 - 1}{(\ln 3)^2} \text{ oe, soi}$	M1	FT <i>their</i> $\frac{dy}{dx}\Big _{x=1}$ providing quotient rule or appropriate product rule attempted
	$\delta y = \frac{\ln 3 - 1}{(\ln 3)^2} h$ or $\delta y = 0.0817 h$ nfww	A1	must have evidence of correct derivative
6	$\left[-\frac{1}{4}e^{2-4x}\right]_{-0.25}^{0.5}$ oe	B2	B1 for ke^{2-4x} , $k \neq -4$
	Correct use of correct limits:	M1	FT their $-\frac{1}{-}e^{2-4x}$ providing B1
	$-\frac{1}{4}e^0 - \left(-\frac{1}{4}e^3\right) oe$		awarded
	$-\frac{1}{4} + \frac{1}{4}e^3$ or exact equivalent, isw	A1	

Question	Answer	Marks	Partial Marks
7(a)	Correctly eliminates x or y e.g. $4x^{2} - 3\left(\frac{2}{x}\right)^{2} + x\left(\frac{2}{x}\right) = 24 \text{ oe or}$ $4\left(\frac{2}{y}\right)^{2} - 3y^{2} + y\left(\frac{2}{y}\right) = 24 \text{ oe}$	M1	
	Rearranges to a 3-term quadratic in x^2 or y^2 soi e.g. $4x^4 - 22x^2 - 12[=0]$ or $2x^4 - 11x^2 - 6[=0]$ or $3y^4 + 22y^2 - 16[=0]$ oe	A1	
	Factorises or solves <i>their</i> 3-term quadratic in x^2 or y^2 soi e.g. $(2x^2 + 1)(x^2 - 6)$ or $(3y^2 - 2)(y^2 + 8)$	M1	
	$x^2 = 6$ oe, nfww or $y^2 = \frac{2}{3}$ nfww	A1	
	$\left(\pm\sqrt{6},\pm\frac{2}{\sqrt{6}}\right)$ or $\left(\pm\sqrt{6},\pm\sqrt{\frac{2}{3}}\right)$ oe, nfww	A1	and no other values; dep on at least the first M1 A1
7(b)	$\sqrt{(x_P - x_Q)^2 + (y_P - y_Q)^2}$ oe, soi	M1	FT providing <i>their</i> x_P , x_Q and <i>their</i> y_P , y_Q are non-zero
	$\frac{4}{3}\sqrt{15}$	A1	
8(a)	Points plotted at x 1351012 $\lg y$ 1.62.22.84.34.9soi and ruled, single straight line of best fit	B2	B1 for at least 4 correctly plotted points
8(b)	lgy = lgA + xlgb soi	B1	
	lgA = their 1.3 soi	M1	dep on using linear points
	$\lg b = their \frac{4.9 - 1.6}{12 - 1}$ oe or $\lg b = 0.3$ oe soi	M1	dep on using linear points
	$A = 10^{1.3}$ isw and $b = 10^{\frac{3}{10}}$ isw	A2	A1 for $A = 10^{1.3}$ isw or $b = 10^{\frac{3}{10}}$ isw
	A = 20 and $b = 2$ nfww	A1	If zero scored, award SC1 for $A = 20$ and SC1 for $b = 2$ found without using the graph in any way

0606/22

Question	Answer	Marks	Partial Marks
8(c)	lg1500 = 3.2 or 3.17[60]	M1	
	OR $x = \log_{theirb} \left(\frac{1500}{theirA} \right)$		FT <i>their A</i> and <i>b</i>
	OR $x = \frac{\lg 1500 - their \lg A}{their \lg b}$		FT their lgA and lgb
	awrt 6.2 to awrt 6.4 isw	A1	
9(a)	$[A =]\frac{1}{2}x^2 \times 0.5 + \frac{1}{2}(x+2)^2 \times 2 + \frac{1}{2}y^2[\times 1] \text{ soi}$	B 1	
	[P =]x+0.5x+2+2(x+2)+(x+2-y)+y+y	M1	Attempts to form an expression in x and y for the perimeter using arc lengths and lengths of lines
	Equates <i>P</i> to 24 and rearranges: $y = 16 - \frac{9}{2}x$	A1	
	$A = \frac{5}{4}x^{2} + 4x + 4 + 128 - 72x + \frac{81}{8}x^{2} \text{ oe}$ leading to given answer $A = \frac{91}{8}x^{2} - 68x + 132$	A1	
9(b)	$\frac{\mathrm{d}A}{\mathrm{d}x} = \frac{91}{4}x - 68$	M1	
	Solves $\frac{dA}{dx} = 0$ for x	M1	FT <i>their</i> $\frac{dA}{dx}$ providing at least one term is correct
	$x = \frac{272}{91}$ or $2\frac{90}{91}$ or	A1	
	2.99 or 2.989[01] rot to 4 or more sf		
	$A = \frac{91}{8} \left(\frac{272}{91}\right)^2 - 68 \left(\frac{272}{91}\right) + 132$	M1	FT <i>their x</i>
	$A = \frac{2764}{91}$ or $30\frac{34}{91}$ or	A1	
	30.4 or 30.37[36] rot to 4 or more sf		

Question	Answer	Marks	Partial Marks
10(a)	$a^{n} = b^{4}$ and $na^{n-1}\left(\frac{1}{a}\right) = 48b^{3}$ oe	M1	
	Eliminates <i>b</i> from one equation using the other equation e.g. $\frac{a^{n-2}}{a^{\frac{3}{4}n}} = \frac{48}{n}$	M1	dep previous M1
	Simplifies <i>a</i> terms e.g. $a^{\frac{n}{4}-2} = \frac{48}{n}$ or $a^{\frac{3n}{4}-6} = \left(\frac{48}{n}\right)^3$	A1	
	Uses an appropriate power and completes to the given form e.g.	A1	
	$\left(a^{\frac{n}{4}-2}\right)^2 = \left(\frac{48}{n}\right)^2$ or $\left(a^{\frac{3n}{4}-6}\right)^{\frac{2}{3}} = \left(\frac{48}{n}\right)^{3\times\frac{2}{3}}$		
	$\Rightarrow a^{\frac{n}{2}-4} = \left(\frac{48}{n}\right)^2$		
10(b)	Correct equation in a, b, n $\frac{n(n-1)}{2} \times a^{n-2} \times \frac{1}{a^2} = 1056b^2 \text{ oe, soi}$	M1	
	Correct equation in <i>a</i> , <i>n</i> $\frac{n(n-1)}{2} \times a^{n-2} \times \frac{1}{a^2} = 1056a^{\frac{n}{2}} \text{ oe}$	A1	
	$\left[\frac{n(n-1)}{2} \times a^{\frac{n}{2}-4} = 1056 \text{ oe} \rightarrow\right]$	A1	
	Correct equation in <i>n</i> only $\frac{n(n-1)}{2} \times \left(\frac{48}{n}\right)^2 = 1056 \text{ oe}$		
	$n^2 - 12n = 0$ or $n - 12 = 0$ oe	A1	
	n = 12 only	A1	
	a = 4 only and $b = 64$ only	A1	

0606/22

Question	Answer	Marks	Partial Marks
11	$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{\mathrm{d}S}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$ or $\frac{\mathrm{d}S}{\mathrm{d}r} = 6$ soi	B 1	
	$S = 2\pi r (4r) \text{ or } 8\pi r^2$	B1	
	$16\pi r = 6$	M1	FT <i>their</i> $S = k\pi r^2$ with <i>k</i> a positive integer to give $2k\pi r = 6$
	$r = \frac{6}{16\pi}$ oe, isw	A1	
	$S = \frac{9}{8\pi}$ oe, isw	A1	