MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\oplus}$, Cambridge International A and AS Level components and some Cambridge O Level components.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1	$\begin{aligned} & \text { Using } \tan ^{2} \theta+1=\sec ^{2} \theta \text { to obtain } \\ & y=2\left(\tan ^{2} \theta+1\right) \text { or }(x+5)^{2}=\sec ^{2} \theta-1 \\ & (x+5)^{2}+1=\frac{y}{2} \end{aligned}$	M1	use of correct identity
	$y=2\left((x+5)^{2}+1\right)$ oe	A1	
2	$\frac{\mathrm{d} y}{\mathrm{~d} x}=10 \mathrm{e}^{5 x}+3$ an attempt at integration in form $a \mathrm{e}^{5 x}+b x$	M1	
	$y=\frac{10}{5} \mathrm{e}^{5 x}+3 x(+c)$	A1	condone omission of c
	attempt to find c using $x=0, y=9$	M1	M1dep
	$y=2 \mathrm{e}^{5 x}+3 x+7$	A1	
3	$\begin{aligned} & 9<4 k(k-4) \\ & 4 k^{2}-16 k-9 \end{aligned}$	M1	use of the discriminant with correct values
	$(2 k-9)(2 k+1)$	M1	M1dep for solution of their quadratic to obtain critical values
	Critical values $\frac{9}{2},-\frac{1}{2}$	A1	
	$k<-\frac{1}{2}, k>\frac{9}{2}$	A1	
4	$a=3$	B1	
	$b=8$	B1	
	$\frac{5}{2}=3 \cos \left(8 \times \frac{\pi}{12}\right)+c$	M1	substitution of $x=\frac{\pi}{12}$ and $y=\frac{5}{2}$ to find c
	$c=4$	A1	
5(i)	$\frac{5}{14}(7 x-10)^{\frac{2}{5}}$	B2	B1 for $k(7 x-10)^{\frac{2}{5}}$

Question	Answer	Marks	Guidance
5(ii)	$\begin{aligned} & \frac{5}{14}\left[(7 x-10)^{\frac{2}{5}}\right]_{6}^{a}=\frac{25}{14} \\ & \frac{5}{14}(7 a-10)^{\frac{2}{5}}-\frac{5}{14}(7 \times 6-10)^{\frac{2}{5}}=\frac{25}{14} \\ & (7 a-10)^{\frac{2}{5}}-4=5 \end{aligned}$	M1	correct application of limits for $k(7 x-10)^{\frac{2}{5}}$
	$a=\frac{9^{\frac{5}{2}}+10}{7}$	M1	M1dep for evaluation of $(7 \times 6-10)^{\frac{2}{5}}$ and correct order of operations to find a, including dealing with power.
	$a=\frac{253}{7} \text { or } 36 \frac{1}{7}$	A1	
6(i)	$\text { Gradient }=\frac{2.4-0.9}{0.2-0.8}(=-2.5)$	B1	
	$\ln y=-\frac{5}{2} x^{2}+c$	M1	straight line form and correct substitutions to find c
	$\ln y=-\frac{5}{2} x^{2}+2.9 \text { oe }$	A1	
	Alternative method $\begin{aligned} & 2.4=p(0.2)+q \\ & 0.9=p(0.8)+q \end{aligned}$	B1	
	Correct method of solution to find p and q from two correct equations	M1	M1dep
	$\ln y=-\frac{5}{2} x^{2}+2.9$	A1	
6(ii)	$y=\mathrm{e}^{\left(-\frac{5}{2} x^{2}+2.9\right)}$	M1	dealing with \ln
	$y=\mathrm{e}^{-\frac{5}{2} x^{2}} \times \mathrm{e}^{2.9}$	M1	M1dep for dealing with the index
	$y=18.2 z^{-\frac{5}{2}}$	A1	

Question	Answer	Marks	Guidance
7(i)	$64-48 x^{2}+15 x^{4}$	B3	B1 for each correct term in final line of response
7(ii)	$\left(64-48 x^{2}+15 x^{4}\right)\left(\frac{1}{x^{2}}+2+x^{2}\right)$	B1	B1for $\frac{1}{x^{2}}+2+x^{2}$ oe
	at least two correctly obtained products leading to terms in x^{2}	M1	
	Term in $x^{2}: 64+15-96$	A1	FT for correct evaluation of their $64+(2 \times$ their- 48$)+$ their 15
	$=-17$	A1	
8(i)	attempt to differentiate a product	M1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left((x-4) \times \frac{5}{3} \times 3(3 x-1)^{\frac{2}{3}}\right)+(3 x-1)^{\frac{5}{3}}$	A2	$\begin{aligned} & \text { A1 for }(+)\left((x-4) \times \frac{5}{3} \times 3(3 x-1)^{\frac{2}{3}}\right) \\ & \text { A1 for }(+)(3 x-1)^{\frac{5}{3}} \end{aligned}$
	$=(3 x-1)^{\frac{2}{3}}((5 x-20)+(3 x-1))$	M1	use of $(3 x-1)^{\frac{5}{3}}=(3 x-1)^{\frac{2}{3}}(3 x-1)$
	$=(3 x-1)^{\frac{2}{3}}(8 x-21)$	A1	
8(ii)	When $x=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=8^{\frac{2}{3}} \times 3$	M1	$(3 \times 3-1)^{\frac{2}{3}} \times k$ or $(9-1)^{\frac{2}{3}} \times k$ or $4 \times k$ (where k is any number)
	$\partial y=8^{\frac{2}{3}} \times 3 \times h$	M1	M1dep for their $\left((9-1)^{\frac{2}{3}} \times k\right) \times h$
	$\partial y=12 h$	A1	
9(a)(i)	720	B1	
9(a)(ii)	240	B1	
9(a)(iii)	$k \times 4!\times 2$ or $240-k \times 4!\times 2$ or correct equivalents with no extra terms added or subtracted	B1	
	$4 \times 4!\times p$ or correct equivalents with no extra terms added or subtracted	B1	
	192	B1	

Question	Answer	Marks	Guidance
9(b)(i)	6435	B1	
9(b)(ii)	With twins: ${ }^{13} C_{6}$ or 1716 Without twins: ${ }^{13} C_{8}$ or 1287	B2	B1 for ${ }^{13} C_{6}$ or 1716 or ${ }^{13} C_{8}$ or 1287 B1 for $\left({ }^{13} C_{6}\right.$ and $\left.{ }^{13} C_{8}\right)$ or (1716 and 1287) with no multiples and no extra terms
	Total: $1716+1287=3003$	B1	3003 from a correct method
10(a)	matrix multiplication, must have at least 2 correct elements	M1	
	$\mathbf{A B}=\left(\begin{array}{cc}13 & 8 \\ 2 a-5 b & 3 a+4 b\end{array}\right)$	A1	
	$\begin{aligned} & 2 a-5 b=18 \\ & 3 a+4 b=4 \end{aligned}$	M1	formation and solution of simultaneous equations
	leading to $a=4, b=-2$	A1	
	Alternate scheme $\begin{aligned} & \mathbf{A B}=\left(\begin{array}{ll} 13 & 8 \\ 18 & 4 \end{array}\right) \\ & \mathbf{A B B}^{-1}=\left(\begin{array}{ll} 13 & 8 \\ 18 & 4 \end{array}\right) \mathbf{B}^{-1} \end{aligned}$	M1	Correct plan
	Correct inverse	B1	
	$\mathbf{A}=\left(\begin{array}{cc}4 & -1 \\ a & b\end{array}\right)=\frac{1}{23}\left(\begin{array}{ll}13 & 8 \\ 18 & 4\end{array}\right)\left(\begin{array}{cc}4 & -3 \\ 5 & 2\end{array}\right)$	M1	Correct order and method of multiplication with at least two correct elements
	leading to $a=4, b=-2$	A1	
10(b)(i)	$-\frac{1}{17}\left(\begin{array}{ll}1 & 5 \\ 4 & 3\end{array}\right)$ oe	B2	$\begin{aligned} & \text { B1 for }-\frac{1}{17} \\ & \text { B1 for }\left(\begin{array}{ll} 1 & 5 \\ 4 & 3 \end{array}\right) \end{aligned}$
10(b)(ii)	$\mathbf{Z}=-\frac{1}{17}\left(\begin{array}{ll}1 & 5 \\ 4 & 3\end{array}\right)\left(\begin{array}{cc}-1 & 2 \\ 4 & 0\end{array}\right)$	M1	pre-multiplication with two elements correct
	$=-\frac{1}{17}\left(\begin{array}{cc}19 & 2 \\ 8 & 8\end{array}\right)$ oe	A2	A1 for four correct of $-\frac{1}{17}, 19,2,8,8$

Question	Answer	Marks	Guidance
11(i)	1.48	B1	
11(ii)	$\frac{1}{2} \times 10^{2} \times \theta=21.8$	M1	correct use of sector area
	$\theta=0.436$	A1	
11(iii)	$\angle B O C=\frac{2 \pi-1.48-0.436}{2} \quad(=2.18(4))$	B1	2.18(4) or unsimplified
	$\begin{aligned} & B C=20 \sin \left(\frac{1}{2} \angle B O C\right) \text { or } \\ & B C=\frac{10 \times \sin B O C}{\sin \left(\frac{\pi-B O C}{2}\right)} \text { or } \\ & B C=\sqrt{(200-200 \cos B O C} \\ & B C=17.7(5) \end{aligned}$	M2	M1 for a complete correct method to find $B C$ using their angle BOC M1 for a correct plan using 14.8, their BC and $10 \times$ their answer to (ii)
	$\begin{aligned} & \text { Perimeter }=14.8+(2 \times 17.7(5))+4.36 \\ & =54.7 \text { or } 54.6 \end{aligned}$	A1	awrt 54.7 or awrt 54.6

Question	Answer	Marks	Guidance
11(iv)	Area $=$ $\left(\frac{1}{2} \times 10^{2} \times 1.48\right)+21.8+2\left(\frac{1}{2} \times 10^{2} \sin 2.18(4)\right)$	B2	$\begin{aligned} & \text { B1 for }\left(\frac{1}{2} \times 10^{2} \times 1.48\right)+21.8 \\ & \text { B1 for } 2\left(\frac{1}{2} \times 10^{2} \sin 2.18(4)\right) \end{aligned}$
	$=178$	B1	awrt 178 from correct working
	Alternative method 1 $\text { Segment area }=\frac{1}{2}\left(10^{2}(2.18-\sin 2.18)\right)$	B1	B1 for $2 \times \frac{1}{2}\left(10^{2}(2.18(4)-\sin 2.18(4))\right.$
	$\begin{aligned} & \text { Area required }= \\ & \quad 100 \pi-2 \times \frac{1}{2}\left(10^{2}(2.18(4)-\sin 2.18(4))\right) \end{aligned}$	B1	
	$=178$	B1	awrt 178 from correct working
	Alternative method 2 Area of trapezium $=\frac{1}{2}((13.5+4.33)(17.1))$	B1	correct area of trapezium $A B C D$ (allow unsimplified)
	$\begin{aligned} & \text { Area of segments }=\frac{1}{2}\left(10^{2}(1.48-\sin 1.48)\right)+ \\ & \frac{1}{2}\left(10^{2}(0.436-\sin 0.436)\right) \end{aligned}$	B1	correct area of both segments (allow unsimplified)
	$=178$	B1	awrt 178 from correct working

Question	Answer	Marks	Guidance
12(i)	$2 x^{2}+5 x-12=0$ or $y^{2}+3 y-28=0$	M1	attempt to get in terms of one variable
	$(2 x-3)(x+4)=0$ or $(y+7)(y-4)=0$	M1	M1dep for solution of a three term quadratic
	leading to $x=-4, y=-7$ and $x=\frac{3}{2}, y=4$	A2	A1 for each 'pair'
	Midpoint $M\left(\frac{\frac{3}{2}-4}{2}, \frac{4+(-7)}{2}\right)\left(=\left(-\frac{5}{4},-\frac{3}{2}\right)\right)$	A1	correctly obtained midpoint
	Gradient of $P Q=2$	B1	may be implied
	$\text { Perp gradient }=-\frac{1}{2}$	M1	$\frac{-1}{\text { their gradient of } P Q}$
	Perp bisector: $y+\frac{3}{2}=-\frac{1}{2}\left(x+\frac{5}{4}\right)$	M1	M1dep for equation of perp bisector using their perp gradient and their midpoint. (unsimplified)
	$\begin{aligned} & y=-\frac{1}{2}(-10)-\frac{17}{8}=\frac{23}{8} \\ & \text { or } \frac{23}{8}=-\frac{1}{2} x-\frac{17}{8} \rightarrow x=-10 \end{aligned}$	A1	all correct so far and for verification using a correct equation

Question	Answer	Marks	Guidance
12(ii)	Area $=\frac{1}{2} \times\left(\frac{17}{8}+1\right) \times \frac{5}{4}$	M1	finding R, S and $R S$
	correct method for finding area	M1	M1dep
	$=\frac{125}{64} \text { or } 1.95 \text { or } 1 \frac{61}{64}$	A1	
	Alternative method 1 $\text { Area }=\frac{1}{2} \times \frac{\sqrt{125}}{4} \times \frac{\sqrt{125}}{8}$	M1	finding $R, S, R M$ and $M S$
	correct method for finding area	M1	M1dep
	$=\frac{125}{64} \text { or } 1.95 \text { or } 1 \frac{61}{64}$	A1	
	Alternative method 2 $\text { Area }=\frac{1}{2}\left\|\begin{array}{cccc} 0 & 0 & \frac{-5}{4} & 0 \\ 1 & \frac{-17}{8} & \frac{-3}{2} & 1 \end{array}\right\|$	M1	finding R and S to obtain $\text { their } \frac{1}{2}\left\|\begin{array}{cccc} 0 & 0 & \frac{-5}{4} & 0 \\ 1 & \frac{-17}{8} & \frac{-3}{2} & 1 \end{array}\right\|$
	$=\frac{1}{2}\left\|-\frac{5}{4}-\frac{85}{32}\right\|$ oe	M1	M1dep for correct method of evaluation
	$=\frac{125}{64}$ or 1.95 or $1 \frac{61}{64}$	A1	

