ADDITIONAL MATHEMATICS

0606/13
Paper 1
MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
www without wrong working

Question	Answer	Marks	Part Marks
1		B1 B1 B1	for symmetrical shape as in the diagram with curved maxima of equal height and cusps on the x-axis for a complete 'curve' with all low points on the x-axis and all high points on $y=2$ for a complete 'curve' meeting the x-axis at $x=30^{\circ}, 90^{\circ}, 150^{\circ}$ only.
2	$=\frac{4 m^{2}-9}{2 m+3}$ $=\frac{(2 m-3)(2 m+3)}{2 m+3}$ $=2 m-3$ Alternative Method $\begin{aligned} & \left(4 m \sqrt{m}-\frac{9}{\sqrt{m}}\right) \\ & \quad=\left(2 \sqrt{m}+\frac{3}{\sqrt{m}}\right)(A m+B) \end{aligned}$ Comparing coefficients $2 A=4,3 A+2 B=0,3 B=-9$	M1 A1 A1 M1 A1 A1	for multiplying each term by \sqrt{m}, using a common denominator of \sqrt{m} or for multiplying numerator and denominator by $2 \sqrt{m}-\frac{3}{\sqrt{m}}$ for a correct expression that will cancel $\frac{(2 m-3)(2 m+3)}{2 m+3}, \frac{\left(4 m^{2}-9\right)(2 m-3)}{\left(4 m^{2}-9\right)}$ $\frac{(2 m-3)(2 m+3)(2 m-3)}{(2 m+3)(2 m-3)}$, or equivalents for $2 m-3$ or $A=2, B=-3$ for correct expansion for correct comparisons to obtain A and B for $2 m-3$ or $A=2, B=-3$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Question	Answer	Marks	Part Marks
(ii)	$\begin{aligned} & 3 x^{2}-2 x p+(p+3)=0 \\ & (-2 p)^{2}-4 \times 3 \times(p+3) \geqslant 0 \text { oe } \\ & p^{2} \geqslant 3(p+3) \text { or } 4 p^{2}-12 p-36 \geqslant 0 \\ & p^{2}-3 p-9 \geqslant 0 \end{aligned}$ Correct method of solution $p^{2}-3 p-9=0$ leading to critical values $\begin{aligned} & p=\frac{3 \pm 3 \sqrt{5}}{2} \\ & p \leqslant \frac{3-3 \sqrt{5}}{2}, p \geqslant \frac{3+3 \sqrt{5}}{2} \end{aligned}$	DM1 A1 M1 A1 A1	for obtaining a 3 -term quadratic in the form $a x^{2}+b x+c(=0)$ for correct substitution of their a, b and c into ‘ $b^{2}-4 a c$ 'and use of discriminant. for full correct working, \geqslant the only sign used, \geqslant used before division by 4 and \geqslant used in answer line and penultimate line. for correct substitution in the quadratic formula or for correct attempt to complete the square. (allow 1 sign error in either method) for both correct critical values for correct range
4 (i) (ii)	$\begin{aligned} & 64-48 x+15 x^{2} \\ & \left(4 \times^{\prime} 644^{\prime}\right)+\left(2 \times^{\prime}-48^{\prime}\right)+\left(3 \times ' 15^{\prime}\right) \\ & =205 \mathrm{cao} \end{aligned}$	B3 M1 A1 A1	for each correct term for correctly obtaining three products using their coefficients in (i) for two correct out of three products (unsimplified) cao for 205 selected as final answer
5 (i)	$\begin{aligned} & \log _{9} x y=\log _{9} x+\log _{9} y \\ & =\frac{\log _{3} x}{\log _{3} 9}+\frac{\log _{3} y}{\log _{3} 9} \\ & =\frac{\log _{3} x}{2}+\frac{\log _{3} y}{2}=\frac{5}{2} \\ & \log _{3} x+\log _{3} y=5 \end{aligned}$ Alternative method $\log _{9} x y=\frac{5}{2}$ $x y=9^{\frac{5}{2}}=3^{5}$ $\log _{3} x y=5$ $\log _{3} x+\log _{3} y=5$	M1 M1 A1 M1 M1 A1	for use of $\log A B=\log A+\log B$ for correct method for change of base. Division by $\log _{3} 9$ should be seen and not implied. for dealing with 2 correctly and 'finishing off' for obtaining $x y$ as a power of 3 for correct use of $\log _{3}$ for using law for logs and arriving at correct answer

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Question	Answer	Marks	Part Marks
(ii)	$\begin{aligned} & \log _{3} x\left(5-\log _{3} x\right)=-6 \\ & -\left(\log _{3} x\right)^{2}+5 \log _{3} x=-6 \\ & \left(\log _{3} x\right)^{2}-5 \log _{3} x-6=0 \end{aligned}$ leading to $\log _{3} x=6, \log _{3} x=-1$ $\begin{aligned} & x=729, \quad x=\frac{1}{3} \\ & y=\frac{1}{3}, y=729 \end{aligned}$	M1 A1 A1 DM1 A1	for substitution, correct expansion of brackets and manipulation to get a 3 term quadratic for a correct quadratic equation in the form $a x^{2}+b x+c=0$ for both solutions for method of solution of $\log _{3} x=k$ or $\log _{3} y=k$ for all x and y correct
6 (i) (ii) (iii)	$\begin{aligned} & \frac{6 x}{3 x^{2}-11} \\ & p=\frac{1}{6} \\ & \frac{1}{6} \ln \left(3 a^{2}-11\right)-\frac{1}{6} \ln 1=\ln 2 \\ & \ln \left(3 a^{2}-11\right)=\ln 2^{6} \\ & 3 a^{2}-11=64 \\ & a=5 \text { only } \end{aligned}$	M1 A1 B1 M1 DM1 DM1 A1	M1 for $\frac{m x}{3 x^{2}-11}$ FT for $p=\frac{1}{m}$ for correct use of limits in $p \ln \left(3 x^{2}-11\right)$ May be implied by following equation for dealing with logs correctly for solution of $3 a^{2}-11=k$ for 5 obtained from an exact method

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Question	Answer	Marks	Part Marks
7 (i)	$\ln y=\ln A+\frac{b}{x}$	B1	for equation, may be implied, must be using \ln unless recovered
	Gradient: $b=-0.8$	B1	for $b=-0.8$ oe
	Intercept or use of equation: $\ln A=4.7$	B1	for $\ln \mathrm{A}=4.7$ oe, allow 4.65 to 4.75
	$A=110$	B1	for $\mathrm{A}=110$, allow 105 to 116 Allow A in terms of e
	Alternative Method $3.5=\ln A+1.5 b$ and $1.5=\ln A+4 b$	B1	for one equation
	leading to $b=-0.8$	B1	for $b=-0.8$
	$\ln A=4.7$	B1	for $\ln A=4.7$
	and $A=110$	B1	for $A=110$ or $\mathrm{e}^{4.7}$
	Alternative Method $\mathrm{e}^{1.5}=A \mathrm{e}^{4 b}$	B1	for $\mathrm{e}^{1.5}=A \mathrm{e}^{4 b}$ or $4.48=A \mathrm{e}^{4 b}$
	$\mathrm{e}^{3.5}=A \mathrm{e}^{1.5 b}$	B1	for $\mathrm{e}^{3.5}=A \mathrm{e}^{1.5 b}$ or $33.1=A \mathrm{e}^{1.5 b}$
	leading to $b=-0.8$	B1	for $b=-0.8$
	and $A=110$	B1	for $A=110$ or e ${ }^{4.7}$
(ii)	When $x=0.32, \frac{1}{x}=3.125, \ln y=2.2$	M1	for a complete method to obtain y, using either the graph, using their values in the equation for $\ln y$ or
	$y=9\left(\right.$ allow 8.5 to 9.5) or $\mathrm{e}^{2.2}$	A1	using their values in the equation for y.
(iii)	When $y=20, \ln y=3, \frac{1}{x}=2.125$	M1	for a complete method to obtain x, using either the graph, using their values in the equation for $\ln y$ or using their values in the equation for y.
	so $x=0.47$ (allow 0.45 to 0.49)	A1	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Question	Answer	Marks	Part Marks
8 (a) (i)	$\begin{aligned} & \frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-\sin \theta}=\frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta}-\sin \theta} \\ & =\frac{1}{1-\sin ^{2} \theta} \text { or }=\frac{\frac{1}{\sin \theta}}{\frac{(1-\sin \theta)}{\sin \theta}} \\ & =\frac{1}{\cos ^{2} \theta} \\ & =\sec ^{2} \theta \end{aligned}$ Alternative Method using cosec $\begin{aligned} & \frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-\sin \theta}=\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-\frac{1}{\operatorname{cosec} \theta}} \\ & =\frac{\operatorname{cosec}^{2} \theta}{\operatorname{cosec}^{2} \theta-1} \\ & =\frac{1+\cot ^{2} \theta}{\cot ^{2} \theta} \\ & =\tan ^{2} \theta+1=\sec ^{2} \theta \\ & \cos ^{2} \theta=\frac{1}{4}, \quad \cos \theta= \pm \frac{1}{2} \end{aligned}$ $\text { or } \tan ^{2} \theta=3, \tan \theta= \pm \sqrt{3}$ $\text { or } \sin ^{2} \theta=\frac{3}{4}, \sin \theta= \pm \frac{\sqrt{3}}{2}$ $\theta=60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ $\begin{aligned} & \tan \left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{3}} \\ & x=\frac{\pi}{6}-\frac{\pi}{4}, \frac{7 \pi}{6}-\frac{\pi}{4}, \frac{13 \pi}{6}-\frac{\pi}{4} \\ & x=\left(-\frac{\pi}{12}\right), \frac{11 \pi}{12}, \frac{23 \pi}{12} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { DM1 } \\ \\ \text { A1 } \\ \\ \hline \text { M1 } \\ \hline \text { DM1 } \\ \hline \text { A1 } \\ \text { M1 } \\ \text { A1,A1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$	for using $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$ and either attempt to multiply top and bottom by $\sin \theta$ or an attempt to combine terms in denominator. for correct use of $1-\sin ^{2} \theta=\cos ^{2} \theta$ for completing the proof for using $\sin \theta=\frac{1}{\operatorname{cosec} \theta}$ and an attempt to combine terms in denominator. for use of $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$ for completing the proof for using (i) to obtain a value for $\cos ^{2} \theta, \tan ^{2} \theta$ or $\sin ^{2} \theta$ and then taking the square root. for two correct values for two further correct values and no extras in range. for correct order of operations, can be implied by $x=-\frac{\pi}{12}$ A1 for $x=\frac{11 \pi}{12}$ A1 for $x=\frac{23 \pi}{12}$ If there are extra solutions in range in addition to the two correct ones then A1A0

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Question	Answer	Marks	Part Marks
9 (a) (i)	${ }^{18} C_{5}=8568 \mathrm{mmm}$	B1	
(ii)	Either		
	${ }^{10} C_{4} \times{ }^{8} C_{1}=1680$	$\begin{gathered} \text { B1 } \\ \mathbf{B 2 , 1 , 0} \end{gathered}$	for a correct plan B2 4 correct numbers with no extras
	${ }^{10} C_{3} \times{ }^{8} C_{2}=3360$		B1 3 correct numbers (out of 3 or 4)
	$\begin{aligned} & { }^{10} C_{2} \times{ }^{8} C_{3}=2520 \\ & { }^{10} C_{1} \times{ }^{8} C_{4}=700 \end{aligned}$		
	Total $=8260$	B1	for correct total
	Or		
	their ${ }^{18} C_{5}-\left({ }^{10} C_{5}+{ }^{8} C_{5}\right)$	B1	for correct plan
		B1	for 252 subtracted
	8568-($252+56$)	B1	for 56 subtracted
	Total $=8260$	B1	for correct total
(b) (i)	${ }^{10} P_{6}=151200$	B1	
(ii)	$4 \times{ }^{8} P_{4} \times 3$	M1	for correct unsimplified
	$=20160$	A1	for correct numerical answer
(iii)	Answer to (i) - ${ }^{7} P_{6}$		for correct plan
		$\begin{aligned} & \mathbf{A 1} \\ & \mathbf{A 1} \end{aligned}$	for correct unsimplified for correct numerical answer
	Alternative:		
	1 symbol: 45360	B2,1,0	B2 for all 3 correct
	2 symbols: 75600		B1 for 2 correct (out of 2 or 3)
	3 symbols: 25200		
	Total: 146160	B1	for correct sum

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0606	13

Question	Answer	Marks	Part Marks
10 (i) (ii)	$\mathrm{f}(x)=3 x^{2}-4 \mathrm{e}^{2 x}(+c)$ passing through $(0,-3)$ $\begin{aligned} & -3=3 \times 0-4 \mathrm{e}^{0}+c \\ & \mathrm{f}(x)=3 x^{2}-4 \mathrm{e}^{2 x}+1 \\ & \mathrm{f}^{\prime}(0)=-8 \end{aligned}$ Normal: $y+3=\frac{1}{8} x$ $\begin{aligned} & 8 y+24=x \\ & y=2-3 x \end{aligned}$ leads to $x=\frac{8}{5}$ oe $\text { Area }==\frac{1}{2} \times 3 \times \frac{8}{5}=2.4 \mathrm{oe}$	M1 A1 A1 DM1 A1 B1 M1 DM1 A1 B1	for one correct term for one correct term $3 x^{2}$ or $-4 \mathrm{e}^{2 x}$ for a second correct term with no extras for correct method to find c. for correct equation for $m=\frac{1}{8}$ for equation of normal using $m=\frac{1}{8}$ for solving normal equation simultaneously with y $=2-3 x$ to get a value of x for $x=\frac{8}{5}, 1.6$ oe FT for a numerical answer equal to $\left\lvert\, \frac{1}{2} \times 3 \times\right. \text { their } x \mid$
11 (i) (ii) (iii)	$a=8 t-8$ When $t=3, a=16$ $0.5,1.5$ $s=\frac{4}{3} t^{3}-4 t^{2}+3 t$ when $t=\frac{1}{2}, s=\frac{2}{3}$ when $t=\frac{3}{2}, s=0$ total distance travelled $=\frac{4}{3}$ Alternative method	B1 B1 B1,B1 M1 A1 DM1 DM1 A1 M1A1 DM1 DM1 A1	for $8 t-8$ for 16 B1 for each for at least two terms correct all correct for calculating displacement when either $t=\frac{1}{2}$ or $t=\frac{3}{2}$ for calculating displacement at $t=\frac{1}{2}$ and doubling. for $\frac{4}{3}$ oe allow 1.33 As before DM1 for calculating displacement when $t=0.5$ or for calculating distance travelled between $t=0.5$ and $t=1.5$ DM1 for doubling distance travelled between $t=0.5$ and $t=1.5$ or for adding that distance to displacement at $t=0.5$ A1 for $\frac{4}{3}$ oe allow 1.33

