CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the March 2016 series

0606 ADDITIONAL MATHEMATICS

0606/12 Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE® and Cambridge International A and AS Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

www without wrong working

Question	Answer	Marks	Guidance
1	$ax + 9 = -2x^{2} + 3x + 1$ $2x^{2} + (a-3)x + 8 = 0$	M1	for attempt to equate the line and the curve and obtain a 3 term quadratic equation
	For 2 distinct roots, $(a-3)^2 > 64$	M1	for use of the discriminant
	Critical values -5 and 11 $a > 11$, $a < -5$	A1 A1	for critical values for correct range
2	$a = -\frac{13}{6}, b = 0, c = 1$	В3	B1 for each
3	$\log_5 \sqrt{x} + \log_{25} x = 3$ $\frac{1}{2} \log_5 x + \frac{\log_5 x}{\log_5 25} = 3$	B1,B1	B1 for $\frac{1}{2}\log_5 x$
	$\log_5 x = 3$	D1	B1 for $\frac{\log_5 x}{\log_5 25}$
	x = 125 cao Alternative scheme:	B1	for final answer
	$\frac{\log_{25}\sqrt{x}}{\log_{25}5} + \log_{25}x = 3$	B1	for change of base
	$\frac{\frac{1}{2}\log_{25} x}{\log_{25} 5} + \log_{25} x = 3$	B1	for $\frac{1}{2}\log_{25} x$ (must be from correct
	$\log_{25} x = \frac{3}{2}$		work)
	x = 125 cao	B1	for final answer

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

Question	Answer	Marks	Guidance
4 (i)		B1 B1 B1	for a line in correct position for $(0, 2)$, $(2, 0)$ for correct shape for y = 3 + 2x , touching the x-axis for $(-1.5, 0)$, $(0, 3)$
(ii)	$2 - x = 3 + 2x$ leading to $x = -\frac{1}{3}$	B1	for $x = -\frac{1}{3}$
	2 - x = -3 - 2x leading to $x = -5$	M1 A1	for correct attempt to deal with 'negative' branch. for $x = -5$
	Alternative: $(2-x)^2 = (3+4x)^2$ leading to $15x^2 + 28x + 5 = 0$	M1	for equating and squaring to obtain a 3 term quadratic equation
	$x = -\frac{1}{3}, x = -5$	A1,A1	A1 for each.
5 (a) (i)	$^{9}P_{6} = 60480$	B1	Must be evaluated
(ii)	$^{4}P_{2} \times ^{3}P_{2} \times 2 = 144$	M1,A1	M1 for attempt a product of 3 perms
(iii)	840×2 1680	B1,B1	B1 for either 840, or realising that there are 2 possible positions for the symbols
(b) (i)	$ \begin{array}{c} ^{10}C_6 \times {}^5C_3 \\ 2100 \end{array} $	M1 A1	for unsimplified form
(ii)	${}^{8}C_{4} \times {}^{4}C_{2}$ 420	M1 A1	for unsimplified form
6 (i)	f(x) > 6	B1	Allow B1 for $y > 6$
(ii)	$f^{-1}(x) = \frac{1}{4}\ln(x-6)$	M1 A1	for a complete method must be $f^{-1}(x) = \text{ or } y =$
	Domain: $x > 6$ Range: $f^{-1}(x) \in \mathbb{R}$	B1 B1	must be using the correct variable in both
(iii)	$f'(x) = 4e^{4x}$	B1	
(iv)	$6 + e^{4x} = 4e^{4x}$ leading to $x = \frac{1}{4} \ln 2$	M1 A1	for a complete, correct method

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

Question	Answer	Marks	Guidance
7 (i)	$f\left(\frac{1}{2}\right) = \frac{a}{8} + \frac{7}{4} - \frac{9}{2} + b (=0)$ $a + 8b = 22$	M1	for attempt at $f\left(\frac{1}{2}\right)$
	8a + 28 - 18 + b = 5(-a + 7 + 9 + b) $13a - 4b = 70$	M1 DM1	for attempt at $f(2) = 5f(-1)$ Allow if the 'wrong way' round for attempt to solve simultaneous equations
	leading to $a = 6$, $b = 2$	A1	A1 for both
(ii)	$(2x-1)(3x^2+5x-2)$ $(2x-1)(3x-1)(x+2)$	B2,1,0	−1 each error
(iii)	(2x-1)(3x-1)(x+2)	M1 A1FT	for attempt to factorise their quadratic factor must be 3 linear factors
8 (i)	lg y = lg A + b lg x Gradient = 1.2 so b = 1.2 Intercept = 1.44 $A = 27.5$	B1 M1 A1 M1 A1	may be implied by later work for attempt at gradient for $b = 1.2$ for attempt to find y -intercept for , allow awrt 28
(ii)	when $x = 100$, $\lg x = 2$ $\lg y = 3.84$ (allow 3.8 to 3.9)	M1 A1	for correct use of graph or equation
(iii)	when $y = 8000$, $\lg 8000 = 3.9$, $\lg x = 2.05$ leading to $x = 113$, $10^{2.05}$ or 112	M1 A1	for correct use of graph or equation

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

Question	Answer	Marks	Guidance
9 (i)	$\frac{7}{2}r^2\theta = \frac{1}{2}r^2(2\pi - \theta)$	M1	for a valid method
	$\theta = \frac{\pi}{4}$ oe	A1	allow in degrees
(ii)	$r+r+\frac{\pi}{4}r=20$, leading to	M1	for valid method
	r = 7.180(3)	A1	Must show enough accuracy to get A1
(iii)	Perimeter $=\frac{\pi}{4}r + 2r\tan\frac{\pi}{8}$	B1,B1	B1 for arc length, B1 for twice AC
	= 5.6394 + 5.9484 $= 11.6$	B1	for 11.6
(iv)	Area = $(r \times AC) - \frac{1}{2}r^2 \frac{\pi}{4}$ = 21.356 - 20.246 or equivalent method using triangles	B1,B1	B1 for area of quadrilateral, allow unsimplified, B1 for sector area
	$1.08 \leqslant \text{Area} \leqslant 1.11$	B1	for area in given range
10 (i)	$x \times \frac{3}{2} \times 2(2x-1)^{\frac{1}{2}} + (2x-1)^{\frac{3}{2}}$	B1 M1 A1	for $\frac{3}{2} \times 2(2x-1)^{\frac{1}{2}}$ for attempt at differentiation of a product for all else correct
(ii)	$3 \int x (2x-1)^{\frac{1}{2}} dx = x (2x-1)^{\frac{3}{2}} - \int (2x-1)^{\frac{3}{2}} dx$ $= x (2x-1)^{\frac{3}{2}} - \frac{1}{2} \times \frac{2}{5} (2x-1)^{\frac{5}{2}}$	M1 B1,B1	for attempt to use part (i) B1 for $x(2x-1)^{\frac{3}{2}}$, allow if divided by 3 B1 for $\frac{1}{2} \times \frac{2}{5} (2x-1)^{\frac{5}{2}}$, allow if
	$\int x(2x-1)^{\frac{1}{2}} dx = \frac{1}{3}(2x-1)^{\frac{3}{2}} \left(x - \frac{1}{5}(2x-1)\right)$ $= \frac{(2x-1)^{\frac{3}{2}}}{15}(3x+1)$	M1 DM1 A1	divided by 3 for taking out a common factor of $(2x-1)^{\frac{3}{2}}$ for attempt to obtain a linear factor
(iii)	$\left(\frac{1}{15} \times 4\right) - 0$	M1 A1FT	for attempt to use limits correctly FT on their $\frac{px+q}{15}$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2016	0606	12

Question	Answer	Marks	Guidance
11 (i)	$\frac{1}{\csc\theta - 1} - \frac{1}{\csc\theta + 1} = \frac{\csc\theta + 1 - \csc\theta + 1}{\csc^2\theta - 1}$	M1	for attempt to obtain a single fraction
		A1	all correct as shown
	$=\frac{2}{\cot^2\theta}$	M1	for use of correct identity
	$= 2 \tan^2 \theta$	A1	for 'finishing off'
	Alternative scheme: $\frac{1}{\csc \theta - 1} - \frac{1}{\csc \theta + 1} = \frac{\sin \theta}{1 - \sin \theta} - \frac{\sin \theta}{1 + \cos \theta}$	M1	for attempt to obtain a single fraction in terms of $\sin \theta$ only
	$= \frac{\left(\sin\theta + \sin^2\theta\right) - \left(\sin\theta - \sin^2\theta\right)}{1 - \sin^2\theta}$	A1	all correct as shown
	$=\frac{2\sin^2\theta}{\cos^2\theta}$	M1	for use of correct identity
	$= 2 \tan^2 \theta$	A1	for 'finishing off'
(ii)	$2\tan^2\theta = 6 + \tan\theta$ $(2\tan\theta + 3)(\tan\theta - 2) = 0$	M1	for attempt to use (i), to obtain a quadratic equation and valid attempt to solve
	$\tan \theta = -\frac{3}{2}$, $\tan \theta = 2$	DM1	for attempt to solve trig equation
	$\theta = 63.4^{\circ}, 123.7^{\circ}, 243.4^{\circ}, 303.7^{\circ}$	A1,A1	for each 'pair'