MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	22

Abbreviations

ouvet	answars which round to
awit	answers which found to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
nfww	not from wrong working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1	(i)	f(-2) = -32 - 16 + 30 + 18 = 0	B1	All four evaluated terms must be seen. Allow if correct long division used
	(ii)	$f(x) = (x+2)(4x^2 - 12x + 9)$	M1 A1	Coefficients 4 and 9 Coefficient –12
		=(x+2)(2x-3)(2x-3)	A1	All three factors together
		$f(x) = 0 \rightarrow x = -2, 1.5$ nfww	A1	Allow 1.5 mentioned just once
2	(i)	$(2-3x)^6 = 64 - 576x + 2160x^2$ isw	B1B1B1	
	(ii)	$2160 - 2 \times 576 = 1008$	M1 A1	<i>their</i> final $2160 + 2 \times their$ final -576
3	(i)	$\overrightarrow{AB} = \begin{pmatrix} -15\\ 8 \end{pmatrix}$	B1	Allow \overrightarrow{BA} May be implied by later work.
		$ AB = \sqrt{15^2 + 8^2} (=17)$	M1	Use of Pythagoras on their AB
		Speed = $17 \times 3 = 51 \text{ km/hr}$	A1	Must be exact
	(ii)	$\overrightarrow{BC} = \begin{pmatrix} 16\\ -30 \end{pmatrix}$	B1	Allow \overrightarrow{CB}
		$ BC = \sqrt{16^2 + 30^2} (= 34)$	M1	Use of Pythagoras on <i>their BC</i>
		Time taken = $\frac{34}{51} \times 60 = 40$ mins (or $\frac{2}{3}$ hrs)	A1	Allow answers which round to 40 to 2sf. Accept 0.66 or 0.67 hrs. Mark final answer.

Ρ	age 3	Mark Scheme			Syllabus	Paper]
		Cambridge IGCSE – October/November 2015		015	0606	22	
				[
4	(a)	$2\mathbf{B}\mathbf{A} = 2 \begin{pmatrix} 1 & -2 & 4 \\ -2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & 5 \\ 7 & 4 \end{pmatrix}$ $= 2 \begin{pmatrix} 24 & 5 \\ 5 & 17 \end{pmatrix} = \begin{pmatrix} 48 & 10 \\ 10 & 34 \end{pmatrix}$	B3,2,1,0	-1 each error multiply by 2 i	in 2×2 results one error	t. Failure to	0
	(b) (i)	$\mathbf{C}^{-1} = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ 1 & 1 \end{pmatrix}$ isw	B1 B1	$\frac{1}{8}$ Matrix			
	(ii)	$\mathbf{I} - \mathbf{D} = \begin{pmatrix} -2 & 2\\ -1 & -3 \end{pmatrix}$	B1				
		$\mathbf{X} = \mathbf{C}^{-1} \left(\mathbf{I} - \mathbf{D} \right) = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2 \\ -1 & -3 \end{pmatrix}$	M1	Pre multiply <i>th</i>	<i>heir</i> I – D wit	h <i>their</i> C ^{−1}	
		$=\frac{1}{8}\begin{pmatrix} -10 & 18\\ -3 & -1 \end{pmatrix}$ isw	A1				
5	(a)	$2^{3(q-1)} \times 2^{2p+1} = 2^{14}$	B1	Correct power isw	s of 2 allow ι	insimplified	1
		$3^{2(p-4)} \times 3^q = 3^4$	B1	Correct power	s of 3 allow ı	insimplified	1
		Solve $3q + 2p = 16$ q + 2p = 12	M1	Attempt to sol by eliminating	ve <i>their</i> linea one variable	r equations	
		p=5, q=2	A1	Both correct			
	(b)	(3x-2)(x+1)	M1	LHS oe isw			
		= 50	A1	50 from correc	et processing	of $2 - \lg 2$	
		$3x^2 + x - 52 = 0 \rightarrow (3x + 13)(x - 4)$	M1	Solution of <i>the</i> Roots must be	<i>eir</i> three term obtained from	quadratic n correct	
		x = 4	A1	quadratic			
		$x = -\frac{13}{3}$ discarded	A1				

Page 4	Mark Scheme				Paper	
	Cambridge IGCSE – October/November 2015			0606	22	
6 (i)	a = 3, b = 2, c = 4	B1B1B1				
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8\cos 4x$ isw	M1 A1FT	$\pm k \cos cx$ and $bc \times \cos cx$ and	no other tern l no other tern	nin <i>x c≠</i> m	1
(iii)	$x = \frac{\pi}{2} \to \frac{\mathrm{d}y}{\mathrm{d}x} = 8\cos 2\pi = 8$	DM1	Find <i>their</i> corr	ect numerica	$1 \frac{\mathrm{d}y}{\mathrm{d}x}$	
	Eqn: $\frac{y-3}{x-\frac{\pi}{2}} = -\frac{1}{8} \qquad \left(\rightarrow y = -\frac{1}{8}x + 3.20 \right)$	M1	Find equation normal gradier	with <i>their</i> nunction of the second	merical l point	
			$\left(\frac{\pi}{2}, 3\right)$	$\frac{1}{\mathrm{d}x}$		
		A1	All correct isw	7		
7 (i)	$\frac{h}{8} = \frac{6-r}{6} \to h = \frac{4}{3}(6-r)$	M1 A1	Uses correct ra	atio. Cannot l	be implied	
(ii)	$V = \pi r^{2} h = \pi r^{2} \times \frac{4}{3} (6 - r)$ $= 8\pi r^{2} - \frac{4}{3}\pi r^{3}$	B1	AG all steps m Penalise missis working	nust be seen ng brackets a	t any point	in
(iii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 16\pi r - 4\pi r^2$	M1 A1	Differentiate a by one	t least one po	ower reduce	ed
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 0 \longrightarrow r = 4$	M1 A1	Attempt to sol Correct value	ve – must ge of <i>r</i> . Ignore <i>i</i>	$t r = \dots$ r = 0	
	$V = \frac{128}{3}\pi \qquad (= 42.7\pi)$	A1	Correct value $\frac{d^2 V}{d^2 V}$ must be	of <i>V</i> . Condor correct and s	ne 134. ome	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = 16\pi - 8\pi r < 0 \text{ when } r = 4 \to \max$	B1	dr ² indication of a maximum state	negative val ed	ue seen plu	S

Page 5	Mark Scheme	Syllabus Paper			
	Cambridge IGCSE – October/No	vember 2	015 0606 22		
8 (i)	Gradient $AB = \frac{8-2}{9+3}$ $\left(=\frac{1}{2}\right)$ isw	B1			
	Equation AB and $x = 0 \rightarrow \frac{y-2}{0+3} = \frac{1}{2} \qquad \left(\rightarrow y = \frac{1}{2}x + 3.5 \right)$	M1	Find equation with <i>their</i> gradient and set $x = 0$		
	$\rightarrow y = 3.5$	A1			
(ii)	<i>D</i> is (3, 5)	B1			
(iii)	Gradient perpendicular = -2	M1	Use of $m_1 \times m_2 = -1$ on gradient used		
	Equation perpendicular $\frac{y-5}{x-3} = -2$ $\rightarrow (y = -2x + 11)$	A1	for <i>their</i> line in (i)		
(iv)	<i>E</i> is (0, 11)	A1FT			
(v)	Area of $ABE = \frac{1}{2} \begin{vmatrix} -3 & 9 & 0 & -3 \\ 2 & 8 & 11 & 2 \end{vmatrix}$	M1	For area of <i>ABE</i> or <i>ECD</i> . $\frac{1}{2}$ and <i>their</i> correct 8 elements must be seen.		
	$=\frac{1}{2} -24+99-18+33 =45$	A1	45 condone from $E(0, -4)$		
	Area of $EDC = \frac{1}{2} \begin{vmatrix} 3 & 0 & 0 & 3 \\ 5 & 3.5 & 11 & 5 \end{vmatrix}$				
	$=\frac{1}{2} -10.5+33 =11.25$	A1	11.25 condone from $E(0, -4)$		

 Page 6
 Mark Scheme
 Syllabus
 Paper

 Cambridge IGCSE – October/November 2015
 0606
 22

9 (i)	$\tan 2r = -\frac{5}{2}$	M1	For obtaining and using
	4 (2r = 128 7 308 7)		$\tan 2x = \pm \frac{5}{2} \text{ or } \pm \frac{4}{2}$
	(2x - 120.7, 500.7)		resulting in $2x =$
	x = 64.3 awrt 154.3 awrt	A1 A1FT	tan $x = \dots$ gets M0 their 64.3° + 90°
(ii)	$\csc^{2} y + 3\csc y - 4 = 0$ or $4\sin^{2} y - 3\sin y - 1 = 0$ $(\csc y + 4)(\csc y - 1) = 0$ or $(4\sin y + 1)(\sin y - 1) = 0$	B1	In any form as a three term quadratic.
	$\sin y = -\frac{1}{4} \text{or} \sin y = 1$	M1	Solve three term quadratic in $\operatorname{cosec} y$ or $\sin y$
	<i>y</i> = 194.5, 345.5, 90	A1A1A1	Answers must be obtained from the correct quadratic
(iii)	$z + \frac{\pi}{4} = \pi - \frac{\pi}{3} $ or	B1	Accept 2.09, 2.10, $\pi - 1.05$, $\pi - 1.04$ on RHS Could be implied by final answer
	$z + \frac{\pi}{4} = \pi + \frac{\pi}{3}$	B1	Accept 4.19, 4.18, $\pi + 1.05$, $\pi + 1.04$ on
	$z = \frac{5\pi}{12}, \frac{13\pi}{12}$	B1B1	RHS. Could be implied by final answer Answers must be correct multiples of π .
10 (i)	$s = \frac{1}{2}e^{2t} + 3e^{-2t} - t + (c)$	M1	Integrate : coefficient of $\frac{1}{2}$ or 3 seen
	$t = 0, \ s = 0 \rightarrow c = -3.5$		with no change in powers of e. Ignore $-t$
	$\left(s = \frac{1}{2}e^{2t} + 3e^{-2t} - t - 3.5\right)$	A1 A1	All correct and simplified
(ii)	$v = 0 \rightarrow u^2 - u - 6 = 0$ oe	M1	Obtain three term quadratic in u or e^{2t} Condone sign errors.
	(u-3)(u+2)=0	DM1	Solve three term quadratic
	$\rightarrow u = 3 \rightarrow t = \frac{1}{2} \ln 3 \text{ or } 0.549$	A1	Accept 0.55 No second answer
(iii)	$t = \frac{1}{2} \ln 3 \rightarrow a = 2e^{2t} + 12e^{-2t}$	B1	Correct differentiation
	=6+4=10	B1	Allow awrt 10.0 or 9.99. No second answer.