MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	e 2 Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0606	13

т

Т

Abbreviations

Г

Awrt	answers which round to
Cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

1 (i)		B1	
(ii)		B1	
(iii)		B1	
2	$\cos\left(3x - \frac{\pi}{4}\right) = (\pm)\frac{1}{\sqrt{2}} \text{ oe}$	M1	division by 2 and square root
	$3x - \frac{\pi}{4} = -\frac{\pi}{4}, \ \frac{\pi}{4}, \ \frac{3\pi}{4}$		
	$x = \left(-\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \ \left(\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \ \left(\frac{3\pi}{4} + \frac{\pi}{4}\right) \div 3 \text{ oe}$	DM1	correct order of operations in order to obtain a solution
	$x = 0$ and $\frac{\pi}{6}$ (or 0 and 0.524)	A2/1/0	A2 for 3 solutions and no extras in the range A1 for 2 solutions
	$x = \frac{\pi}{3}$ (or 1.05)		A0 for one solution or no solutions

	Page 3	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – October/Nove	15 0606 13	
3	(a)	$\begin{pmatrix} 12 & 16 & 4 \\ 30 & 32 & 10 \end{pmatrix}$	B2,1,0	B2 for 6 elements correct, B1 for 5 elements correct
	(b)	$ \begin{pmatrix} 28 & -24 \\ -8 & 76 \end{pmatrix} = m \begin{pmatrix} 4 & 6 \\ 2 & -8 \end{pmatrix} + n \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	B2,1,0	B2 for 4 correct elements in X^2 B1 for 3 correct elements in X^2
		-24 = 6m or -8 = 2m giving m = -4	B1	For $m = -4$ using correct I
		28 = 4m + n or $76 = -8m + nn = 44$	M1 A1	complete method to obtain <i>n</i>
	(c)	$a^2 - 6 = 0$ so $a = \pm \sqrt{6}$	B2,1,0	B2 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$, with no incorrect statements seen or B1 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$ seen or B1 for $a = \sqrt{6}$ and no incorrect working
4	(i)	$\frac{1}{2}\left(4\sqrt{3}+1\right) \times BC = \frac{47}{2}$	B1	correct use of the area
		$\frac{1}{2} \left(4\sqrt{3} + 1 \right) \times BC = \frac{47}{2}$ $BC = \frac{47}{\left(4\sqrt{3} + 1 \right)} \times \frac{\left(4\sqrt{3} - 1 \right)}{\left(4\sqrt{3} - 1 \right)}$ $BC = 4\sqrt{3} - 1$	M1 A1	correct rationalisation Dependent on all method being seen
		Alternative method		
		$\frac{1}{2}\left(4\sqrt{3}+1\right) \times BC = \frac{47}{2}$ $\left(4\sqrt{3}+1\right)\left(a\sqrt{3}+b\right) = 47$	B1	
		Leading to $12a + b = 47$ and $a + 4b = 0$ Solution of simultaneous equations	M1	
		$BC = 4\sqrt{3-1}$	A1	Dependent on all method seen including solution of simultaneous equations
	(ii)	$ (4\sqrt{3}+1)^2 + (4\sqrt{3}-1)^2 $ = $(48+8\sqrt{3}+1) + (48-8\sqrt{3}+1)$		
		$= \left(48 + 8\sqrt{3} + 1\right) + \left(48 - 8\sqrt{3} + 1\right)$	B1FT	6 correct FT terms seen
		$AC^2 = 98$ $AC = 7\sqrt{2}$ or $p = 7$	B1cao	98 and $7\sqrt{2}$ or 98 and $p = 7$

Page 4		Syllabus Paper	
	Cambridge IGCSE – October/Nove	ember 20	15 0606 13
5	When $x = \frac{\pi}{4}$, $y = 2$	B1	<i>y</i> = 2
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\mathrm{sec}^2 x$	B1	$5 \sec^2 x$
	When $x = \frac{\pi}{4}$, $\frac{dy}{dx} = 10$	B1	10 from differentiation
	Equation of normal $y - 2 = -\frac{1}{10} \left(x - \frac{\pi}{4} \right)$	M1	$y - their2 = -\frac{1}{their10} \left(x - \frac{\pi}{4} \right)$
	$10y + x - 20 - \frac{\pi}{4} = 0$ or $10y + x - 20.8 = 0$ oe	A1	allow unsimplified
6 (i)		B1 B1 B1	shape intercepts on <i>x</i> -axis intercept on <i>y</i> -axis for a curve with a maximum and two arms
(ii)	(2,16)	M1 A1	(2, ±16) seen or (2, k) where $k > 0$ (2, 16) or $x = 2$ and $y = 16$ only
(iii)	k = 0	B1	
	<i>k</i> > 16	B1	

	Page 5	Mark Scheme				Paper
		Cambridge IGCSE – October/Nove	ember 20	15	0606	13
7		$\frac{dy}{dx} = 2\sin 3x (+c)$ $4\sqrt{3} = 2\frac{\sqrt{3}}{2} + c$	B1 M1	$2\sin 3x$ finding constant using $\frac{dy}{dx} = k\sin 3x + c \text{ making use of}$ $\frac{dy}{dx} = 4\sqrt{3} \text{ and } x = \frac{\pi}{9}$		use of
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin 3x + 3\sqrt{3}$	A1	Allow with a	$c = 5.20 \text{ or } \sqrt{2}$	7
		$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x (+d)$	B1FT	FT integratio	on of <i>their k</i> s	in 3x
		$-\frac{1}{3} = -\frac{2}{3}\cos\frac{\pi}{3} + 3\sqrt{3}\left(\frac{\pi}{9}\right) + d$	M1	finding const	ant d for $k co$	$\cos 3x + cx + d$
		$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x - \frac{\sqrt{3}}{3}\pi$	A1	Allow y = -0.667 correction or better	$\cos 3x + 5.20x$	-0.577π
8	(a)	$(2+kx)^8 = 256 + 1024kx + 1792k^2x^2 + 1792k^3x^3$				
		$k = \frac{1}{4}$	B1			
		p = 112 $q = 28$	B1FT B1FT	FT 1792 mu FT 1792 mu		
	(b)	${}^{9}C_{3}x^{6}\left(-\frac{2}{x^{2}}\right)^{3}$	M1	correct term	seen	
		$84x^6\left(-\frac{8}{x^6}\right)$ leading to -672	DM1 A1	Term selecte evaluated	d and 2 ³ and	${}^{9}C_{3}$ correctly

			Syllabus Paper			
Cambridge IGCSE – October/November 201			15 0606 13			
				1		
(a)		Number of arrangements with Maths books as one item = $4!$ or $4 \times 3!$	M1	$4!(\times 2) \text{ or } 4 \times 3!(\times 2) \text{ oe}$		
		or Maths books can be arranged 2! ways and History 3! ways = $2! \times 3!$		$2! \times 3! (\times 4)$ or $2 \times 3! (\times 4)$ oe		
		$2 \times 4!$ or $2 \times 4 \times 3!$ or $4 \times 2 \times 3! = 48$	A1	A1 for 48		
((ii)	$5! - 48$ or $6 \times 2 \times 3!$	M1	5! - their answer to (i) or for $6 \times 2 \times 3$		
		72	A1			
(b)	(i)	3003	B1			
((ii)	3003 - 6 - 135	M1	<i>their</i> answer to (i) $-6 - {}^{6}C_{4} \times 9$		
			B1	135 subtracted		
		2862	A1			
		or				
		2M 3W = 720	M1	complete correct method using 4 cases,		
				may be implied by working. Must have		
			D 1	at least one correct		
				any 3 correct		
		2002	1 1 1			
	(b)	(ii) (b) (i)	or Maths books can be arranged 2! ways and History 3! ways = $2! \times 3!$ $2 \times 4!$ or $2 \times 4 \times 3!$ or $4 \times 2 \times 3! = 48$ (ii) $5! - 48$ or $6 \times 2 \times 3!$ 72 (b) (i) 3003 (ii) $3003 - 6 - 135$ 2862 or	item = 4! or $4 \times 3!$ or Maths books can be arranged 2! ways and History 3! ways = $2! \times 3!$ A1 (ii) $2 \times 4!$ or $2 \times 4 \times 3!$ or $4 \times 2 \times 3! = 48$ A1 (ii) $5! - 48$ or $6 \times 2 \times 3!$ M1 72 A1 (b) (i) 3003 B1 (ii) $3003 - 6 - 135$ M1 2862 A1 M1 0r $2M \ 3W = 720$ M1 $3M \ 2W = 1260$ M1 M1 $4M \ 1W = 756$ M1 B1		

	Page 7	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE – October/November 2015			0606	13
10	(i)	$10^{2} = 6^{2} + 6^{2} - 2 \times 6 \times 6 \times \cos ABC$ or $\sin\left(\frac{ABC}{2}\right) = \frac{5}{6}$	M1			ent or correct equating areas
		or $ABC = \pi - \sin^{-1} \frac{10\sqrt{11}}{36}$				
		ABC = 1.9702	A1	1.9702 or bet	tter	
	(ii)	XY = 2	B1	for XY (may allow on diag		y later work,
		Arc length $6\left(\frac{\pi-1.970}{2}\right)$ oe	B1	correct arc le	ength (unsimp	olified)
		Perimeter = $2 + 2\left(6\left(\frac{\pi - 1.970}{2}\right)\right)$ = 9.03	M1 A1	their $2 + 2 \times$	$6 \times their$ and	gle C
	(iii)	$\left(\frac{1}{2} \times 6^2 \left(\frac{\pi - 1.970}{2}\right) - \frac{1}{2} \times 5 \times \sqrt{11}\right) \times 2$	M1 M1	sector area us area of $\triangle AB$ of AC, or (\triangle s	M where M is	s the midpoint Y or ΔABC
		= 4.50 or 4.51 or better	A1	Answers to 3		

Page 8	Mark Scheme		Syllabus Paper
	Cambridge IGCSE – October/No	15 0606 13	
11	$x^2 - 2x - 3 = 0$ or $y^2 - 6y + 5 = 0$	M1	substitution and simplification to obtain a three term quadratic equation in one variable
	leading to (3, 5) and (-1, 1)	A1,A1	A1 for each 'pair' from a correct quadratic equation, correctly obtained.
	Midpoint (1, 3)	B1cao	midpoint
	(Gradient – 1) Perpendicular bisector $y = 4 - x$	M1	perpendicular bisector, must be using <i>their</i> perpendicular gradient and <i>their</i>
	Meets the curve again if $x^2 + 10x - 15 = 0$ or $y^2 - 18y + 41 = 0$	M1	midpoint substitution and simplification to obtain a three term quadratic equation in one variable.
	leading to $x = -5 \pm 2\sqrt{10}$, $y = 9 \mp 2\sqrt{10}$	A1,A1	A1 for each 'pair'
	$CD^{2} = (4\sqrt{10})^{2} + (4\sqrt{10})^{2}$	M1	Pythagoras using <i>their</i> coordinates from solution of second quadratic. $(x_1 - x_2)^2 + (y_1 - y_2)^2$ must be seen if not using correct
	$CD = 8\sqrt{5}$	A1	coordinates. A1 for $8\sqrt{5}$ from $\sqrt{320}$ and all correct so far.

[Page 9	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – October/Nove	ember 20	15 0606 13
12	(a)	$2^{2x-1} \times 2^{2(x+y)} = 2^7$ and $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$	M1	expressing 4^{x+y} , 128 as powers of 2 and 9^{2y-x} , 27^{y-4} as powers of 3
		2x-1+2(x+y)=7 oe 2(2y-x)=3(y-4) oe leading to $x = 4, y = -4$	A1 A1 A1	Correct equation from correct working Correct equation from correct working for both
		Example of Alternative method Method mark as above 2x - 1 + 2(x + y) = 7	M1 A1	As before One of the correct equations in x and y
		leading to $y = \frac{(8-4x)}{2}$ Correctly substituted in $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$		
		Leading to $2\left(\frac{2(8-4x)}{2}-x\right) = 3\left(\frac{(8-4x)}{2}-4\right)$ Leading to $x = 4$ and $y = -4$	A1 A1	Correct, unsimplified, equation in x or y only Both answers
	(b)	$(2(5^z)-1)(5^z+1)=0$ leading to 2.5 ^z = 1 $(5^z = -1)$	M1 A1	solution of quadratic correct solution
		$5^{z} = 0.5$	DM1	correct attempt to solve $2.5^z = k$, where <i>k</i> is positive
		$z = \frac{\log 0.5}{\log 5}$ or $z = -0.431$ or better	A1	must have one solution only