MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme State Stat		Paper
	Cambridge IGCSE – October/November 2015	0606	11

т

т

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

1	$kx^2 + (2k - 8)x + k = 0$	M1	for attempt to obtain a 3 term quadratic in the form $ax^2 + bx + c = 0$, where <i>b</i> contains a term in <i>k</i> and a constant
	$b^{2} - 4ac > 0$ so $(2k - 8)^{2} - 4k^{2}(>0)$	DM1	for use of $b^2 - 4ac$
	$4k^2 - 32k + 64 - 4k^2 (>0)$	DM1	for attempt to simplify and solve for k
	leading to $k < 2$ only	A1	A1 must have correct sign
2	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -5x(+c)$	M1	for attempt to integrate, do not penalise omission of arbitrary constant.
	When $x = -1$, $\frac{dy}{dx} = 2$ leading to		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -5x - 3$	A1	Must have $\frac{dy}{dx} = \dots$
	$y = -\frac{5x^2}{2} - 3x + d$	DM1	for attempt to integrate <i>their</i> $\frac{dy}{dx}$, but
	When $x = -1$, $y = 3$ leading to		penalise omission of arbitrary constant.
	$y = \frac{5}{2} - \frac{5x^2}{2} - 3x$	A1	
	Alternative scheme:		
	$y = ax^{2} + bx + c$ so $\frac{dy}{dx} = 2ax + b$	M1	for use of $y = ax^2 + bx + c$, differentiation and use of conditions to give an equation in <i>a</i>
	When $x = -1$, $\frac{dy}{dx} = 2$		and b
	so $-2a+b=2$	A1	for a correct equation
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2a$	DM1	for a second differentiation to obtain <i>a</i>
	so $a = -\frac{5}{2}$, $b = -3$, $c = \frac{5}{2}$	A1	for a, b and c all correct

Mark Scheme Cambridge IGCSE – October/November 2015

SyllabusPaper060611

3	$\sqrt{(\sec^2 \theta - 1)} + \sqrt{(\csc^2 \theta - 1)} = \sec \theta \csc \theta$		
	$LHS = \tan \theta + \cot \theta$	B1	may be implied by the next line
	$=\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta}{\sin\theta}$	B1	for dealing with $\tan \theta$ and $\cot \theta$ in terms of $\sin \theta$ and $\cos \theta$
	$=\frac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta}$	M1	for attempt to obtain as a single fraction
	$=\frac{1}{\sin\theta\cos\theta}$	M1	for the use of $\sin^2 \theta + \cos^2 \theta = 1$ in correct context
	$= \sec \theta \csc \theta$	A1	Must be convinced as AG
	Alternate scheme:		
	$LHS = \tan\theta + \cot\theta$		
	$= \tan \theta + \frac{1}{\tan \theta}$	B1	may be implied by subsequent work
	$=\frac{\tan^2\theta+1}{\tan\theta}$	M1	for attempt to obtain as a single fraction
	$=\frac{\sec^2\theta}{\tan\theta}$		for use of the correct identity
	$=\frac{\sec\theta}{\tan\theta}\times\sec\theta$	M1	for 'splitting' $\sec^2 \theta$
	$= \csc\theta \sec\theta$		Must be convinced as AG
4 (a) (i)	28	B1	
(ii)	20160	B1	
(iii)	$6 \times (5 \times 4 \times 3)$ oe to give 360 $6 \times (5 \times 4 \times 3) \times 2$	B1	for realising that the music books can be arranged amongst themselves and consideration of the other 5 books
	= 720	B1	for the realisation that the above arrangement can be either side of the clock.
(b)	Either ${}^{10}C_6 - {}^7C_6 = 210 - 7$	B1, B1	B1 for ${}^{10}C_6$, B1 for ${}^{7}C_6$
	= 203	B1	
	Or $1 \text{W} 5\text{M} = 63$ 2 W 4M = 105	B1	for 1 case correct, must be considering more than 1 different case. allow <i>C</i> notation
	3W 3M = 35 $Total = 203$	B1 B1	for the other 2 cases, allow <i>C</i> notation for final result

	Page 4	Mark Scheme			Syllabus	Paper	
		Cambridge IGCSE – October/November 2015			0606	11	
5	(i)	$\frac{dy}{dx} = (x-3)\frac{4x}{2x^2+1} + \ln(2x^2+1)$	B1 M1	for correct differ for attempt to di	rentiation of fferentiate a	In function product	
		when $r = 2$ $\frac{dy}{dt} = -\frac{8}{3} + \ln 9$ or	A 1	for correct produ	uct terms m	- 1st he brack	eted
		when $x = 2$, $\frac{dx}{dx} = 9$ + in y be	711	where appropria	ite		cicu
		or 1.31 or better	A1	for correct final	answer		
	(ii)	$\partial v \sim (answer to (i)) \times 0.03$	M1	for attempt to us	o small char	and a constant of the constant	
	(11)	-0.0202 ellow event 0.020		follow through a	on their num	orical answe	or to
		= 0.0595, allow awr 0.059	AIFI	(i) allow to 2 sf	or better	cifical allowe	51 10
				(1) allow to 2 st			
6	(i)	$A \cap B = \{3\}$	B1				
	(ii)	$A \cup C = \{1, 3, 5, 6, 7, 9, 11, 12\}$	B1				
((iii)	$A' \cap C = \{1, 5, 7, 11\}$	B1				
((iv)	$(D \cup B)' = \{1, 9\}$	B1				
	(v)	Any set containing up to 5 positive even	B1				
		numbers ≤ 12					
		0.2					
7	(i)	Gradient = $\frac{0.2}{0.8}$ = 0.25	M1	for attempt to fin	nd the gradie	nt	
		b = 0.25	A1				
		Either $6 = 0.25(2.2) + c$	M1	for a correct sub	stitution of v	values from	
		Or $5.8 = 0.25(1.4) + c$		either point and	attempt to o	otain <i>c</i> or	
		545		solution by simu	iltaneous equ	ations	
		leading to $A = 233$ or e^{310}	Al	dealing with $c =$	$= \ln A$		
		Alternative schemes:					
		The number series.					
		Either Or					
		$6 = b(2.2) + c$ $e^{6} = A(e^{2.2})^{b}$	M1	for 2 simultaneo	ous equations	as shown	
		$50 + (14)^{b}$			us equations		
		$5.8 = b(1.4) + c$ $e^{5.0} = A(e^{1.1})$					
			DM1	for attempt to so	olve to get at	least one	
		L l'instant - 0.000 - m - ^{5,45} - 1.1 - 0.05	A 1 A 1	solution for one	unknown		
		Leading to $A = 233$ or e ⁻¹¹ and $b = 0.25$	AI, AI	A1 for each			
	(ii)	Either $y = 222 \times 5^{0.25}$	N/1	for acrest	faithan	tion in -11	
	(II)	Equies $y = 255 \times 5$	1111	to obtain vusing	n enner equa	and and of	npt b
		$\text{Or} \qquad \text{In } y = 0.23 \text{ In } 3 + \text{In } 233$		found in (i)	Sinci value		0
		leading to $y = 348$	A1				
		6 - ,	-				

Page 5Mark SchemeSyllabusPaperCambridge IGCSE – October/November 2015060611

8	$\frac{dy}{dx} = \frac{2(x^2 + 5)^{\frac{1}{2}} - \frac{1}{2}(2x)(x^2 + 5)^{-\frac{1}{2}}(2x - 1)}{x^2 + 5}$ or $\frac{dy}{dx} = 2(x^2 + 5)^{-\frac{1}{2}} - \frac{1}{2}(2x)(x^2 + 5)^{-\frac{3}{2}}(2x - 1)$ When $x = 2, y = 1$ and $\frac{dy}{dx} = \frac{4}{9}$ (allow 0.444 or 0.44)	B1 M1 A1 B1, B1	for $\frac{1}{2}(2x)(x^2+5)^{-\frac{1}{2}}$ for a quotient or $-\frac{1}{2}(2x)(x^2+5)^{-\frac{3}{2}}$ for a product allow if either seen in separate working for attempt to differentiate a quotient or a correct product for all correct, allow unsimplified B1 for each
	Equation of tangent: $y - 1 = \frac{4}{9}(x - 2)$ (9y = 4x + 1)	M1 A1	for attempt at straight line, must be tangent using <i>their</i> gradient and y allow unsimplified.
9 (i)	$\frac{2}{3}(4+x)^{\frac{3}{2}}(+c)$	B1,B1	B1 for $k(4+x)^{\frac{3}{2}}$ only, B1 for $\frac{2}{3}(4+x)^{\frac{3}{2}}$ only
(ii)	Area of trapezium = $\left(\frac{1}{2} \times 5 \times 5\right)$ = 12.5	M1 A1	Condone omission of <i>c</i> for attempt to find the area of the trapezium
	Area = $\left[\frac{2}{3}(4+x)^{\frac{3}{2}}\right]_{0}^{5} - \left(\frac{1}{2} \times 5 \times 5\right)$ = $\left(\frac{2}{3} \times 27\right) - \frac{16}{3} - \frac{25}{3}$	M1 A1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0) for $18 - \frac{16}{2}$ or equivalent
	(3) 3 2 = $\frac{1}{6}$ or awrt 0.17	A1	5
	Alternative scheme: Equation of <i>AB</i> $y = \frac{1}{5}x + 2$	M1	for a correct attempt to find the equation of AB
	Area = $\int_{0}^{\delta} \sqrt{4 + x} - \left(\frac{1}{5}x + 2\right) dx$ = $\left[\frac{2}{3}\left(4 + x\right)^{\frac{3}{2}} - \frac{x^{2}}{10} - 2x\right]^{5}$	M1	for correct use of limits using $k(4+x)^{\frac{3}{2}}$ only (must be using 5 and 0)
	$= \left(\frac{2}{3} \times 27\right) - \frac{16}{3} - \frac{25}{2}$ $= \frac{1}{6} \text{ or awrt } 0.17$	A1 A1 A1	for $18 - \frac{16}{3}$ or equivalent for 12.5 or equivalent

	Page 6	Mark Scheme			Syllabus	Paper	
		Cambridge IGCSE – October/No	vember	2015	0606	11	
				1			
10	(i)	All sides are equal to the radii of the circles which are also equal	B1	for a convincing	g argument		
(ii)	Angle $CBE = \frac{2\pi}{3}$	B1	must be in terms of π , allow 0.667 π , or better			
(i	ii)	$DE = 10\sqrt{3}$	M1	for correct attempt to find <i>DE</i> using <i>their</i> angle <i>CBE</i>			r
			A1	for correct DE,	allow 17.3 or	better	
		Arc $CE = 10 \times \frac{2\pi}{3}$	M1	for attempt to fi <i>CBE</i> (20.94)	nd arc length	with <i>their</i> a	angle
		Perimeter = $20 + 10\sqrt{3} + \frac{20\pi}{3}$	M1	for $10 + 10 + D$	E + an arc least	ngth	
		= 58.3 or 58.2	A1	allow unsimpli	fied		
(i	v)	Area of sector: $\frac{1}{2} \times 10^2 \times \frac{2\pi}{3} = \frac{100\pi}{3}$	M1 for sector area using <i>their</i> angle <i>C</i> unsimplified, may be implied			gle <i>CBE</i> allo 1	ow
		Area of triangle: $\frac{1}{2} \times 10^2 \times \sin \frac{2\pi}{3} = 25\sqrt{3}$	M1	for triangle area must be the sam unsimplified, m	using <i>their a</i> ne as <i>their</i> any ay be implied	ingle <i>DBE</i> v gle <i>CBE</i> , all 1	vhich ow
		Area $=$ $\frac{100\pi}{3} + 25\sqrt{3}$ or awrt 148	A1	allow in either f	orm		

	Page 7	Mark Scheme	Syllabus Paper	
		Cambridge IGCSE – October/No	2015 0606 11	
11	(a) (i)	$(x+3)^2-5$	B1, B1	B1 for 3, B1 for -5
	(ii)	$v \ge 4$ or $f \ge 4$	B1	Correct notation or statement must be used
	(11)	<i>y p</i> 1011 <i>p</i> 1	21	Concernotation of statement must be used
	(iii)	$y = \sqrt{x+5-3}$	M1	for a correct attempt to find the inverse
			A1	must be in the correct form and positive root
				only
		Domain $x \ge 4$	B1FT	Follow through on <i>their</i> answer to (ii), must
				be using x
	(b)	$h^2 g(x) = h^2 (e^x)$	M1	for correct order
		$=h(5e^{x}+2)$	M1	for dealing with h^2
		$= 25e^{x} + 12$		
		$25e^{x} + 12 = 37,$	DM1	for solution of equation (dependent on both
				previous M marks)
		leading to $x = 0$	A1	
		Alternative scheme 1:		
		$hg(x) = h^{-1}(37)$	M1	for correct order
		$h^{-1}(37) = 7$	M1	for dealing with $h^{-1}(37)$
		$5e^x + 2 = 7,$	DM1	for solution of equation (dependent on both
		leading to $x = 0$	Λ1	previous M marks)
			AI	
		Alternative scheme 2:		
		$g(x) = h^{-2}(37)$	M1	for correct order
		$h^{-2}(37) = 1$	M1	for dealing with $h^{-2}(37)$
		$e^x = 1,$	DM1	for solution of equation (dependent on both
		leading to $x = 0$	A1	previous M marks)

	Page 8	Page 8 Mark Scheme		Syllabus	Paper	er	
		Cambridge IGCSE – October/No	ovember	2015	0606	11	
12		$x^{2} + 6x - 16 = 0$ or $y^{2} + 10y - 75 = 0$ leading to	M1	for attempt to o terms of one va	btain a 3 term riable only	quadratic in	n
		(x+8)(x-2) = 0 or $(y-5)(y+15) = 0$	DM1	for attempt to so	olve quadratic	equation	
		so $x = 2, y = 5$ and $x = -8, y = -15$	A1, A1	A1 for each 'pa	ir' of values.		
		Midpoint (-3, -5)	B1				
		Gradient = 2, so perpendicular gradient = $-\frac{1}{2}$ Perpendicular bisector: $y + 5 = -\frac{1}{2}(x + 3)$	M1	for attempt at st	traight line eq	uation, mus	t be
		(2y + x + 13 = 0)		using midpoint	and perpendi	cular gradie	nt
		Point C (-13, 0)	M1	for use of $y = 0$ (but not $2x - y$) in <i>their</i> line $+1=0$)	equation	
		Area $=\frac{1}{2}\begin{vmatrix} -13 & 2 & -8 & -13 \\ 0 & 5 & -15 & 0 \end{vmatrix}$	M1	for correct atten their values for	npt to find are A, B and C (C	ea, may be u C must lie or	sing n the
		=125	A1	x-axis)			
		Alternative method for area: $CM^2 = 125, \ AB^2 = 500$ Area $= \frac{1}{2} \times \sqrt{125} \times \sqrt{500}$	M1	for correct atten their values for	npt to find are <i>A</i> , <i>B</i> and <i>C</i>	ea may be us	sing
		= 125	A1				